These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33523943)

  • 1. Reconciling atmospheric CO
    Komar N; Zeebe RE
    Sci Adv; 2021 Jan; 7(4):. PubMed ID: 33523943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early Cenozoic Decoupling of Climate and Carbonate Compensation Depth Trends.
    Greene SE; Ridgwell A; Kirtland Turner S; Schmidt DN; Pälike H; Thomas E; Greene LK; Hoogakker BAA
    Paleoceanogr Paleoclimatol; 2019 Jun; 34(6):930-945. PubMed ID: 31598585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cenozoic record of the equatorial Pacific carbonate compensation depth.
    Pälike H; Lyle MW; Nishi H; Raffi I; Ridgwell A; Gamage K; Klaus A; Acton G; Anderson L; Backman J; Baldauf J; Beltran C; Bohaty SM; Bown P; Busch W; Channell JE; Chun CO; Delaney M; Dewangan P; Dunkley Jones T; Edgar KM; Evans H; Fitch P; Foster GL; Gussone N; Hasegawa H; Hathorne EC; Hayashi H; Herrle JO; Holbourn A; Hovan S; Hyeong K; Iijima K; Ito T; Kamikuri S; Kimoto K; Kuroda J; Leon-Rodriguez L; Malinverno A; Moore TC; Murphy BH; Murphy DP; Nakamura H; Ogane K; Ohneiser C; Richter C; Robinson R; Rohling EJ; Romero O; Sawada K; Scher H; Schneider L; Sluijs A; Takata H; Tian J; Tsujimoto A; Wade BS; Westerhold T; Wilkens R; Williams T; Wilson PA; Yamamoto Y; Yamamoto S; Yamazaki T; Zeebe RE
    Nature; 2012 Aug; 488(7413):609-14. PubMed ID: 22932385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales.
    Torres MA; West AJ; Li G
    Nature; 2014 Mar; 507(7492):346-9. PubMed ID: 24646998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Earth System Model Analysis of How Astronomical Forcing Is Imprinted Onto the Marine Geological Record: The Role of the Inorganic (Carbonate) Carbon Cycle and Feedbacks.
    Vervoort P; Kirtland Turner S; Rochholz F; Ridgwell A
    Paleoceanogr Paleoclimatol; 2021 Oct; 36(10):e2020PA004090. PubMed ID: 35874321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Middle Eocene greenhouse warming facilitated by diminished weathering feedback.
    van der Ploeg R; Selby D; Cramwinckel MJ; Li Y; Bohaty SM; Middelburg JJ; Sluijs A
    Nat Commun; 2018 Jul; 9(1):2877. PubMed ID: 30038400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea-level fall.
    Merico A; Tyrrell T; Wilson PA
    Nature; 2008 Apr; 452(7190):979-82. PubMed ID: 18432242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neogene continental denudation and the beryllium conundrum.
    Li S李; Goldstein SL; Raymo ME
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34649990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling.
    Willenbring JK; von Blanckenburg F
    Nature; 2010 May; 465(7295):211-4. PubMed ID: 20463736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering.
    Misra S; Froelich PN
    Science; 2012 Feb; 335(6070):818-23. PubMed ID: 22282473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced weathering input from South Asia to the Indian Ocean since the late Eocene.
    Song Z; Wan S; Colin C; France-Lanord C; Yu Z; Dapoigny A; Jin H; Li M; Zhang J; Zhao D; Shi X; Li A
    Sci Bull (Beijing); 2023 Feb; 68(3):305-313. PubMed ID: 36690576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continental-pelagic carbonate partitioning and the global carbonate-silicate cycle.
    Caldeira K
    Geology; 1991 Mar; 19():204-6. PubMed ID: 11538267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum.
    Krause AJ; Sluijs A; van der Ploeg R; Lenton TM; Pogge von Strandmann PAE
    Nat Geosci; 2023; 16(8):730-738. PubMed ID: 37564379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global Quaternary Carbonate Burial: Proxy- and Model-Based Reconstructions and Persisting Uncertainties.
    Wood M; Hayes CT; Paytan A
    Ann Rev Mar Sci; 2023 Jan; 15():277-302. PubMed ID: 35773213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model.
    Krissansen-Totton J; Arney GN; Catling DC
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4105-4110. PubMed ID: 29610313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 40-million-year history of atmospheric CO(2).
    Zhang YG; Pagani M; Liu Z; Bohaty SM; Deconto R
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2001):20130096. PubMed ID: 24043869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling.
    Thorley RM; Taylor LL; Banwart SA; Leake JR; Beerling DJ
    Plant Cell Environ; 2015 Sep; 38(9):1947-61. PubMed ID: 25211602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new model for atmospheric oxygen over Phanerozoic time.
    Berner RA; Canfield DE
    Am J Sci; 1989 Apr; 289(4):333-61. PubMed ID: 11539776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric carbon dioxide levels over phanerozoic time.
    Berner RA
    Science; 1990 Sep; 249(4975):1382-6. PubMed ID: 17812165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Return of the coral reef hypothesis: basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2.
    Opdyke BN; Walker JC
    Geology; 1992 Aug; 20(8):733-6. PubMed ID: 11538164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.