These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33523960)

  • 1. Adiponectin receptor 1 variants contribute to hypertrophic cardiomyopathy that can be reversed by rapamycin.
    Dhandapany PS; Kang S; Kashyap DK; Rajagopal R; Sundaresan NR; Singh R; Thangaraj K; Jayaprakash S; Manjunath CN; Shenthar J; Lebeche D
    Sci Adv; 2021 Jan; 7(2):. PubMed ID: 33523960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adiponectin receptor 1 overexpression reduces lipid accumulation and hypertrophy in the heart of diet-induced obese mice--possible involvement of oxidative stress and autophagy.
    Chou IP; Chiu YP; Ding ST; Liu BH; Lin YY; Chen CY
    Endocr Res; 2014; 39(4):173-9. PubMed ID: 24679155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal protein S6 kinase beta-1 gene variants cause hypertrophic cardiomyopathy.
    Jain PK; Jayappa S; Sairam T; Mittal A; Paul S; Rao VJ; Chittora H; Kashyap DK; Palakodeti D; Thangaraj K; Shenthar J; Koranchery R; Rajendran R; Alireza H; Mohanan KS; Rathinavel A; Dhandapany PS
    J Med Genet; 2022 Oct; 59(10):984-992. PubMed ID: 34916228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling.
    Schramm C; Fine DM; Edwards MA; Reeb AN; Krenz M
    Am J Physiol Heart Circ Physiol; 2012 Jan; 302(1):H231-43. PubMed ID: 22058153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of human myosin-binding protein C3 variants associated with hypertrophic cardiomyopathy reveals exon-specific cardiac phenotypes in zebrafish model.
    Da'as SI; Yalcin HC; Nasrallah GK; Mohamed IA; Nomikos M; Yacoub MH; Fakhro KA
    J Cell Physiol; 2020 Nov; 235(11):7870-7888. PubMed ID: 31943169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel αB-crystallin R123W variant drives hypertrophic cardiomyopathy by promoting maladaptive calcium-dependent signal transduction.
    Chou C; Martin GL; Perera G; Awata J; Larson A; Blanton R; Chin MT
    Front Cardiovasc Med; 2023; 10():1223244. PubMed ID: 37435054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MYH7B variants cause hypertrophic cardiomyopathy by activating the CaMK-signaling pathway.
    Chen P; Li Z; Nie J; Wang H; Yu B; Wen Z; Sun Y; Shi X; Jin L; Wang DW
    Sci China Life Sci; 2020 Sep; 63(9):1347-1362. PubMed ID: 32207065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy.
    Marian AJ; Braunwald E
    Circ Res; 2017 Sep; 121(7):749-770. PubMed ID: 28912181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole exome sequencing combined with integrated variant annotation prediction identifies a causative myosin essential light chain variant in hypertrophic cardiomyopathy.
    Nomura A; Tada H; Teramoto R; Konno T; Hodatsu A; Won HH; Kathiresan S; Ino H; Fujino N; Yamagishi M; Hayashi K
    J Cardiol; 2016 Feb; 67(2):133-9. PubMed ID: 26443374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Genetic Basis of Hypertrophic Cardiomyopathy.
    Marian AJ
    Circ Res; 2021 May; 128(10):1533-1553. PubMed ID: 33983830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular analysis of sarcomeric and non-sarcomeric genes in patients with hypertrophic cardiomyopathy.
    Bottillo I; D'Angelantonio D; Caputo V; Paiardini A; Lipari M; De Bernardo C; Giannarelli D; Pizzuti A; Majore S; Castori M; Zachara E; Re F; Grammatico P
    Gene; 2016 Feb; 577(2):227-35. PubMed ID: 26656175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The prevalence of Fabry disease among 1009 unrelated patients with hypertrophic cardiomyopathy: a Russian nationwide screening program using NGS technology.
    Savostyanov K; Pushkov A; Zhanin I; Mazanova N; Trufanov S; Pakhomov A; Alexeeva A; Sladkov D; Asanov A; Fisenko A
    Orphanet J Rare Dis; 2022 May; 17(1):199. PubMed ID: 35578305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adiponectin acts as a positive indicator of left ventricular diastolic dysfunction in patients with hypertrophic cardiomyopathy.
    Unno K; Shibata R; Izawa H; Hirashiki A; Murase Y; Yamada T; Kobayashi M; Noda A; Nagata K; Ouchi N; Murohara T
    Heart; 2010 Mar; 96(5):357-61. PubMed ID: 19648128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle LIM Protein Force-Sensing Mediates Sarcomeric Biomechanical Signaling in Human Familial Hypertrophic Cardiomyopathy.
    Riaz M; Park J; Sewanan LR; Ren Y; Schwan J; Das SK; Pomianowski PT; Huang Y; Ellis MW; Luo J; Liu J; Song L; Chen IP; Qiu C; Yazawa M; Tellides G; Hwa J; Young LH; Yang L; Marboe CC; Jacoby DL; Campbell SG; Qyang Y
    Circulation; 2022 Apr; 145(16):1238-1253. PubMed ID: 35384713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic Expression and Outcomes in Individuals With Rare Genetic Variants of Hypertrophic Cardiomyopathy.
    de Marvao A; McGurk KA; Zheng SL; Thanaj M; Bai W; Duan J; Biffi C; Mazzarotto F; Statton B; Dawes TJW; Savioli N; Halliday BP; Xu X; Buchan RJ; Baksi AJ; Quinlan M; Tokarczuk P; Tayal U; Francis C; Whiffin N; Theotokis PI; Zhang X; Jang M; Berry A; Pantazis A; Barton PJR; Rueckert D; Prasad SK; Walsh R; Ho CY; Cook SA; Ware JS; O'Regan DP
    J Am Coll Cardiol; 2021 Sep; 78(11):1097-1110. PubMed ID: 34503678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Novel Genetic Variants and Comorbidities Associated With ICD-10-Based Diagnosis of Hypertrophic Cardiomyopathy Using the UK Biobank Cohort.
    Gyftopoulos A; Chen YJ; Wang L; Williams CH; Chun YW; O'Connell JR; Perry JA; Hong CC
    Front Genet; 2022; 13():866042. PubMed ID: 35685441
    [No Abstract]   [Full Text] [Related]  

  • 17. Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy.
    Tsybouleva N; Zhang L; Chen S; Patel R; Lutucuta S; Nemoto S; DeFreitas G; Entman M; Carabello BA; Roberts R; Marian AJ
    Circulation; 2004 Mar; 109(10):1284-91. PubMed ID: 14993121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnostic yield of hypertrophic cardiomyopathy in first-degree relatives of decedents with idiopathic left ventricular hypertrophy.
    Finocchiaro G; Dhutia H; Gray B; Ensam B; Papatheodorou S; Miles C; Malhotra A; Fanton Z; Bulleros P; Homfray T; Witney AA; Bunce N; Anderson LJ; Ware JS; Sharma R; Tome M; Behr ER; Sheppard MN; Papadakis M; Sharma S
    Europace; 2020 Apr; 22(4):632-642. PubMed ID: 32011662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sexual dimorphism in cardiac transcriptome associated with a troponin C murine model of hypertrophic cardiomyopathy.
    Dieseldorff Jones KM; Vied C; Valera IC; Chase PB; Parvatiyar MS; Pinto JR
    Physiol Rep; 2020 Mar; 8(6):e14396. PubMed ID: 32189431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inducible Pluripotent Stem Cell-Derived Cardiomyocytes Reveal Aberrant Extracellular Regulated Kinase 5 and Mitogen-Activated Protein Kinase Kinase 1/2 Signaling Concomitantly Promote Hypertrophic Cardiomyopathy in RAF1-Associated Noonan Syndrome.
    Jaffré F; Miller CL; Schänzer A; Evans T; Roberts AE; Hahn A; Kontaridis MI
    Circulation; 2019 Jul; 140(3):207-224. PubMed ID: 31163979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.