These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33523966)

  • 1. Carbon isotope evidence for the global physiology of Proterozoic cyanobacteria.
    Hurley SJ; Wing BA; Jasper CE; Hill NC; Cameron JC
    Sci Adv; 2021 Jan; 7(2):. PubMed ID: 33523966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carboxysome Mispositioning Alters Growth, Morphology, and Rubisco Level of the Cyanobacterium Synechococcus elongatus PCC 7942.
    Rillema R; Hoang Y; MacCready JS; Vecchiarelli AG
    mBio; 2021 Aug; 12(4):e0269620. PubMed ID: 34340540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of RuBisCO and CO
    Garcia AK; Kędzior M; Taton A; Li M; Young JN; Kaçar B
    Geobiology; 2023 May; 21(3):390-403. PubMed ID: 36602111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon isotope fractionation by an ancestral rubisco suggests that biological proxies for CO
    Wang RZ; Nichols RJ; Liu AK; Flamholz AI; Artier J; Banda DM; Savage DF; Eiler JM; Shih PM; Fischer WW
    Proc Natl Acad Sci U S A; 2023 May; 120(20):e2300466120. PubMed ID: 37155899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The McdAB system positions α-carboxysomes in proteobacteria.
    MacCready JS; Tran L; Basalla JL; Hakim P; Vecchiarelli AG
    Mol Microbiol; 2021 Jul; 116(1):277-297. PubMed ID: 33638215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanobacterial carboxysomes: microcompartments that facilitate CO2 fixation.
    Rae BD; Long BM; Whitehead LF; Förster B; Badger MR; Price GD
    J Mol Microbiol Biotechnol; 2013; 23(4-5):300-7. PubMed ID: 23920493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism.
    Mangan NM; Flamholz A; Hood RD; Milo R; Savage DF
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):E5354-62. PubMed ID: 27551079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Singular adaptations in the carbon assimilation mechanism of the polyextremophile cyanobacterium Chroococcidiopsis thermalis.
    Aguiló-Nicolau P; Galmés J; Fais G; Capó-Bauçà S; Cao G; Iñiguez C
    Photosynth Res; 2023 May; 156(2):231-245. PubMed ID: 36941458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the in vivo function of α-carboxysomes and β-carboxysomes in two model cyanobacteria.
    Whitehead L; Long BM; Price GD; Badger MR
    Plant Physiol; 2014 May; 165(1):398-411. PubMed ID: 24642960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CO2-concentrating mechanism of Synechococcus WH5701 is composed of native and horizontally-acquired components.
    Rae BD; Förster B; Badger MR; Price GD
    Photosynth Res; 2011 Sep; 109(1-3):59-72. PubMed ID: 21384181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of Cyanobacterial (
    Satagopan S; Huening KA; Tabita FR
    mBio; 2019 Jul; 10(4):. PubMed ID: 31337726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rubisco proton production can drive the elevation of CO
    Long BM; Förster B; Pulsford SB; Price GD; Badger MR
    Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33931502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of Functional Rubisco Activases into Engineered Carboxysomes to Enhance Carbon Fixation.
    Chen T; Fang Y; Jiang Q; Dykes GF; Lin Y; Price GD; Long BM; Liu LN
    ACS Synth Biol; 2022 Jan; 11(1):154-161. PubMed ID: 34664944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. α-cyanobacteria possessing form IA RuBisCO globally dominate aquatic habitats.
    Cabello-Yeves PJ; Scanlan DJ; Callieri C; Picazo A; Schallenberg L; Huber P; Roda-Garcia JJ; Bartosiewicz M; Belykh OI; Tikhonova IV; Torcello-Requena A; De Prado PM; Millard AD; Camacho A; Rodriguez-Valera F; Puxty RJ
    ISME J; 2022 Oct; 16(10):2421-2432. PubMed ID: 35851323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2.
    Occhialini A; Lin MT; Andralojc PJ; Hanson MR; Parry MA
    Plant J; 2016 Jan; 85(1):148-60. PubMed ID: 26662726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in the bacterial organelles for CO
    Liu LN
    Trends Microbiol; 2022 Jun; 30(6):567-580. PubMed ID: 34802870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Progress in structure and CO2-concentrating mechanism of carboxysomes].
    Zhang B; Tian P
    Sheng Wu Gong Cheng Xue Bao; 2014 Aug; 30(8):1164-71. PubMed ID: 25423746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria.
    Rae BD; Long BM; Badger MR; Price GD
    Microbiol Mol Biol Rev; 2013 Sep; 77(3):357-79. PubMed ID: 24006469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light Modulates the Biosynthesis and Organization of Cyanobacterial Carbon Fixation Machinery through Photosynthetic Electron Flow.
    Sun Y; Casella S; Fang Y; Huang F; Faulkner M; Barrett S; Liu LN
    Plant Physiol; 2016 May; 171(1):530-41. PubMed ID: 26956667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo analyses of the role of the carboxysomal β-type carbonic anhydrase of the cyanobacterium Synechococcus elongatus in carboxylation of ribulose-1,5-bisphosphate.
    Nishimura T; Yamaguchi O; Takatani N; Maeda S; Omata T
    Photosynth Res; 2014 Sep; 121(2-3):151-7. PubMed ID: 24585024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.