BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 33524094)

  • 1. Janus 2D titanium nitride halide TiNX
    Shi X; Yin H; Jiang S; Chen W; Zheng GP; Ren F; Wang B; Zhao G; Liu B
    Phys Chem Chem Phys; 2021 Feb; 23(5):3637-3645. PubMed ID: 33524094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A first-principles study on the electronic, piezoelectric, and optical properties and strain-dependent carrier mobility of Janus TiXY (X ≠ Y, X/Y = Cl, Br, I) monolayers.
    Yang Q; Zhang T; Hu CE; Chen XR; Geng HY
    Phys Chem Chem Phys; 2022 Dec; 25(1):274-285. PubMed ID: 36475497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A piezoelectric quantum spin Hall insulator VCClBr monolayer with a pure out-of-plane piezoelectric response.
    Guo SD; Mu WQ; Guo HT; Tao YL; Liu BG
    Phys Chem Chem Phys; 2022 Aug; 24(33):19965-19974. PubMed ID: 35971867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropy in colossal piezoelectricity, giant Rashba effect and ultrahigh carrier mobility in Janus structures of quintuple Bi
    Tripathy N; De Sarkar A
    J Phys Condens Matter; 2023 May; 35(33):. PubMed ID: 37167999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures, stabilities and piezoelectric properties of Janus gallium oxides and chalcogenides monolayers.
    Cui Y; Peng L; Sun L; Li M; Zhang X; Huang Y
    J Phys Condens Matter; 2020 Feb; 32(8):08LT01. PubMed ID: 31675733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pentagonal C
    Li X; Zhang F; Li J; Wang Z; Huang Z; Yu J; Zheng K; Chen X
    J Phys Chem Lett; 2023 Mar; 14(10):2692-2701. PubMed ID: 36892273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic room-temperature piezoelectric quantum anomalous hall insulator in Janus monolayer Fe
    Guo SD; Mu WQ; Xiao XB; Liu BG
    Nanoscale; 2021 Aug; 13(30):12956-12965. PubMed ID: 34477779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride.
    Mohanta MK; Rawat A; Dimple ; Jena N; Ahammed R; De Sarkar A
    Nanoscale; 2019 Nov; 11(45):21880-21890. PubMed ID: 31697290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Dimensional Janus Transition Metal Oxides and Chalcogenides: Multifunctional Properties for Photocatalysts, Electronics, and Energy Conversion.
    Chen W; Hou X; Shi X; Pan H
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35289-35295. PubMed ID: 30238747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The coexistence of high piezoelectricity and superior optical absorption in Janus Bi
    Cao SH; Zhang T; Geng HY; Chen XR
    Phys Chem Chem Phys; 2024 Jan; 26(5):4629-4642. PubMed ID: 38251770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Dimensional Janus FeXY (X, Y = Cl, Br, and I, X ≠ Y) Monolayers: Half-Metallic Ferromagnets with Tunable Magnetic Properties under Strain.
    Li R; Jiang J; Shi X; Mi W; Bai H
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38897-38905. PubMed ID: 34370461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides.
    Dong L; Lou J; Shenoy VB
    ACS Nano; 2017 Aug; 11(8):8242-8248. PubMed ID: 28700210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Group-IV(A) Janus dichalcogenide monolayers and their interfaces straddle gigantic shear and in-plane piezoelectricity.
    Nandi P; Rawat A; Ahammed R; Jena N; De Sarkar A
    Nanoscale; 2021 Mar; 13(10):5460-5478. PubMed ID: 33687044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh mechanical flexibility induced superior piezoelectricity of InSeBr-type 2D Janus materials.
    Shi X; Jiang S; Han X; Wei M; Wang B; Zhao G; Zheng GP; Yin H
    Phys Chem Chem Phys; 2022 Apr; 24(14):8371-8377. PubMed ID: 35332903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titanium nitride halides monolayers: promising 2D anisotropic thermoelectric materials.
    Wang C; Gao G
    J Phys Condens Matter; 2020 May; 32(20):205503. PubMed ID: 31978928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferro-piezoelectricity in emerging Janus monolayer BMX
    Bezzerga D; Haidar EA; Stampfl C; Mir A; Sahnoun M
    Nanoscale Adv; 2023 Feb; 5(5):1425-1432. PubMed ID: 36866264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly-efficient heterojunction solar cells based on 2D Janus transition-metal nitride halide (TNH) monolayers with ultrahigh carrier mobility.
    Xie W; Pang J; Yang J; Kuang X; Mao A
    Nanoscale; 2023 Nov; 15(45):18328-18336. PubMed ID: 37921002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Janus zirconium halide ZrXY (X, Y = Br, Cl and F) monolayers with high lattice thermal conductivity and strong visible-light absorption.
    Singh J; Singh G; Tripathi SK
    Phys Chem Chem Phys; 2023 Feb; 25(6):4690-4700. PubMed ID: 36412485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two dimensional Janus RuXY (X, Y = Br, Cl, F, I, X ≠ Y) monolayers: ferromagnetic semiconductors with spontaneous valley polarization and tunable magnetic anisotropy.
    Liu Z; Zhou B; Wang X; Mi W
    Phys Chem Chem Phys; 2023 Sep; 25(37):25146-25156. PubMed ID: 37712230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetry-breaking induced large piezoelectricity in Janus tellurene materials.
    Chen Y; Liu J; Yu J; Guo Y; Sun Q
    Phys Chem Chem Phys; 2019 Jan; 21(3):1207-1216. PubMed ID: 30565590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.