BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 33524142)

  • 21. A test metric for assessing single-cell RNA-seq batch correction.
    Büttner M; Miao Z; Wolf FA; Teichmann SA; Theis FJ
    Nat Methods; 2019 Jan; 16(1):43-49. PubMed ID: 30573817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GapClust is a light-weight approach distinguishing rare cells from voluminous single cell expression profiles.
    Fa B; Wei T; Zhou Y; Johnston L; Yuan X; Ma Y; Zhang Y; Yu Z
    Nat Commun; 2021 Jul; 12(1):4197. PubMed ID: 34234139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of some aspects in supervised cell type identification for single-cell RNA-seq: classifier, feature selection, and reference construction.
    Ma W; Su K; Wu H
    Genome Biol; 2021 Sep; 22(1):264. PubMed ID: 34503564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BUTTERFLY: addressing the pooled amplification paradox with unique molecular identifiers in single-cell RNA-seq.
    Gustafsson J; Robinson J; Nielsen J; Pachter L
    Genome Biol; 2021 Jun; 22(1):174. PubMed ID: 34103073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors.
    McGinnis CS; Murrow LM; Gartner ZJ
    Cell Syst; 2019 Apr; 8(4):329-337.e4. PubMed ID: 30954475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clustering methods for single-cell RNA-sequencing expression data: performance evaluation with varying sample sizes and cell compositions.
    Suner A
    Stat Appl Genet Mol Biol; 2019 Aug; 18(5):. PubMed ID: 31646845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GREIN: An Interactive Web Platform for Re-analyzing GEO RNA-seq Data.
    Mahi NA; Najafabadi MF; Pilarczyk M; Kouril M; Medvedovic M
    Sci Rep; 2019 May; 9(1):7580. PubMed ID: 31110304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. REBET: a method to determine the number of cell clusters based on batch effect removal.
    Fang ZY; Lin CX; Xu YP; Li HD; Xu QS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34131702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BAMscale: quantification of next-generation sequencing peaks and generation of scaled coverage tracks.
    Pongor LS; Gross JM; Vera Alvarez R; Murai J; Jang SM; Zhang H; Redon C; Fu H; Huang SY; Thakur B; Baris A; Marino-Ramirez L; Landsman D; Aladjem MI; Pommier Y
    Epigenetics Chromatin; 2020 Apr; 13(1):21. PubMed ID: 32321568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-Cell Transcriptome Analysis of T Cells.
    Van Der Byl W; Rizzetto S; Samir J; Cai C; Eltahla AA; Luciani F
    Methods Mol Biol; 2019; 2048():155-205. PubMed ID: 31396939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ADAPTS: Automated deconvolution augmentation of profiles for tissue specific cells.
    Danziger SA; Gibbs DL; Shmulevich I; McConnell M; Trotter MWB; Schmitz F; Reiss DJ; Ratushny AV
    PLoS One; 2019; 14(11):e0224693. PubMed ID: 31743345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of RNA-Seq data preprocessing pipelines for transcriptomic predictions across independent studies.
    Van R; Alvarez D; Mize T; Gannavarapu S; Chintham Reddy L; Nasoz F; Han MV
    BMC Bioinformatics; 2024 May; 25(1):181. PubMed ID: 38720247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives.
    Dal Molin A; Di Camillo B
    Brief Bioinform; 2019 Jul; 20(4):1384-1394. PubMed ID: 29394315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions.
    Yeo GHT; Saksena SD; Gifford DK
    Nat Commun; 2021 May; 12(1):3222. PubMed ID: 34050150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DECENT: differential expression with capture efficiency adjustmeNT for single-cell RNA-seq data.
    Ye C; Speed TP; Salim A
    Bioinformatics; 2019 Dec; 35(24):5155-5162. PubMed ID: 31197307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pipeComp, a general framework for the evaluation of computational pipelines, reveals performant single cell RNA-seq preprocessing tools.
    Germain PL; Sonrel A; Robinson MD
    Genome Biol; 2020 Sep; 21(1):227. PubMed ID: 32873325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current RNA-seq methodology reporting limits reproducibility.
    Simoneau J; Dumontier S; Gosselin R; Scott MS
    Brief Bioinform; 2021 Jan; 22(1):140-145. PubMed ID: 31813948
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FEATS: feature selection-based clustering of single-cell RNA-seq data.
    Vans E; Patil A; Sharma A
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33285568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast, sensitive and accurate integration of single-cell data with Harmony.
    Korsunsky I; Millard N; Fan J; Slowikowski K; Zhang F; Wei K; Baglaenko Y; Brenner M; Loh PR; Raychaudhuri S
    Nat Methods; 2019 Dec; 16(12):1289-1296. PubMed ID: 31740819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Screen technical noise in single cell RNA sequencing data.
    Bai YL; Baddoo M; Flemington EK; Nakhoul HN; Liu YZ
    Genomics; 2020 Jan; 112(1):346-355. PubMed ID: 30802598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.