BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33524153)

  • 1. Integrating quantitative proteomics with accurate genome profiling of transcription factors by greenCUT&RUN.
    Nizamuddin S; Koidl S; Bhuiyan T; Werner TV; Biniossek ML; Bonvin AMJJ; Lassmann S; Timmers H
    Nucleic Acids Res; 2021 May; 49(9):e49. PubMed ID: 33524153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. greenCUT&RUN: Efficient Genomic Profiling of GFP-Tagged Transcription Factors and Chromatin Regulators.
    Koidl S; Timmers HTM
    Curr Protoc; 2021 Oct; 1(10):e266. PubMed ID: 34644460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. greenPipes: an integrated data analysis pipeline for greenCUT&RUN and CUT&RUN genome-localization datasets.
    Nizamuddin S; Timmers HTM
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38718209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription factor chromatin profiling genome-wide using uliCUT&RUN in single cells and individual blastocysts.
    Patty BJ; Hainer SJ
    Nat Protoc; 2021 May; 16(5):2633-2666. PubMed ID: 33911257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The GreenCut: re-evaluation of physiological role of previously studied proteins and potential novel protein functions.
    Heinnickel ML; Grossman AR
    Photosynth Res; 2013 Oct; 116(2-3):427-36. PubMed ID: 23873414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulation of the mouse PNRC2 promoter by the nuclear factor Y (NFY) and E2F1.
    Zhou D; Masri S; Ye JJ; Chen S
    Gene; 2005 Nov; 361():89-100. PubMed ID: 16181749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. c-Fos-induced activation of a TATA-box-containing promoter involves direct contact with TATA-box-binding protein.
    Metz R; Bannister AJ; Sutherland JA; Hagemeier C; O'Rourke EC; Cook A; Bravo R; Kouzarides T
    Mol Cell Biol; 1994 Sep; 14(9):6021-9. PubMed ID: 8065335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NF-Y Binding Site Architecture Defines a C-Fos Targeted Promoter Class.
    Haubrock M; Hartmann F; Wingender E
    PLoS One; 2016; 11(8):e0160803. PubMed ID: 27517874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites.
    Skene PJ; Henikoff S
    Elife; 2017 Jan; 6():. PubMed ID: 28079019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting of the visna virus tat protein to AP-1 sites: interactions with the bZIP domains of fos and jun in vitro and in vivo.
    Morse BA; Carruth LM; Clements JE
    J Virol; 1999 Jan; 73(1):37-45. PubMed ID: 9847304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CCAAT/enhancer binding protein alpha assembles essential cooperating factors in common subnuclear domains.
    Schaufele F; Enwright JF; Wang X; Teoh C; Srihari R; Erickson R; MacDougald OA; Day RN
    Mol Endocrinol; 2001 Oct; 15(10):1665-76. PubMed ID: 11579200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome wide features, distribution and correlations of NF-Y binding sites.
    Zambelli F; Pavesi G
    Biochim Biophys Acta Gene Regul Mech; 2017 May; 1860(5):581-589. PubMed ID: 27769808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based engineering of anti-GFP nanobody tandems as ultra-high-affinity reagents for purification.
    Zhang Z; Wang Y; Ding Y; Hattori M
    Sci Rep; 2020 Apr; 10(1):6239. PubMed ID: 32277083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high definition look at the NF-Y regulome reveals genome-wide associations with selected transcription factors.
    Dolfini D; Zambelli F; Pedrazzoli M; Mantovani R; Pavesi G
    Nucleic Acids Res; 2016 Jun; 44(10):4684-702. PubMed ID: 26896797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic methods in profiling DNA accessibility and factor localization.
    Klein DC; Hainer SJ
    Chromosome Res; 2020 Mar; 28(1):69-85. PubMed ID: 31776829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The German cDNA network: cDNAs, functional genomics and proteomics.
    Wiemann S; Bechtel S; Bannasch D; Pepperkok R; Poustka A;
    J Struct Funct Genomics; 2003; 4(2-3):87-96. PubMed ID: 14649292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis.
    Jolly ER; Chin CS; Herskowitz I; Li H
    BMC Bioinformatics; 2005 Nov; 6():275. PubMed ID: 16297241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CCAAT/enhancer-binding protein (C/EBP) beta is acetylated at multiple lysines: acetylation of C/EBPbeta at lysine 39 modulates its ability to activate transcription.
    CeseƱa TI; Cardinaux JR; Kwok R; Schwartz J
    J Biol Chem; 2007 Jan; 282(2):956-67. PubMed ID: 17110376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin proteomic profiling reveals novel proteins associated with histone-marked genomic regions.
    Ji X; Dadon DB; Abraham BJ; Lee TI; Jaenisch R; Bradner JE; Young RA
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3841-6. PubMed ID: 25755260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy.
    Day RN
    Mol Endocrinol; 1998 Sep; 12(9):1410-9. PubMed ID: 9731708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.