BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33524257)

  • 1. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities.
    Portelinha J; Duay SS; Yu SI; Heilemann K; Libardo MDJ; Juliano SA; Klassen JL; Angeles-Boza AM
    Chem Rev; 2021 Feb; 121(4):2648-2712. PubMed ID: 33524257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved bioactivity of antimicrobial peptides by addition of amino-terminal copper and nickel (ATCUN) binding motifs.
    Libardo MD; Cervantes JL; Salazar JC; Angeles-Boza AM
    ChemMedChem; 2014 Aug; 9(8):1892-901. PubMed ID: 24803240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-binding tripeptide motif increases potency of the antimicrobial peptide Anoplin via Reactive Oxygen Species generation.
    Libardo MD; Nagella S; Lugo A; Pierce S; Angeles-Boza AM
    Biochem Biophys Res Commun; 2015 Jan; 456(1):446-51. PubMed ID: 25482446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper-binding motifs Xxx-His or Xxx-Zzz-His (ATCUN) linked to an antimicrobial peptide: Cu-binding, antimicrobial activity and ROS production.
    Bouraguba M; Glattard E; Naudé M; Pelletier R; Aisenbrey C; Bechinger B; Raibaut L; Lebrun V; Faller P
    J Inorg Biochem; 2020 Dec; 213():111255. PubMed ID: 32980641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs.
    Agbale CM; Sarfo JK; Galyuon IK; Juliano SA; Silva GGO; Buccini DF; Cardoso MH; Torres MDT; Angeles-Boza AM; de la Fuente-Nunez C; Franco OL
    Biochemistry; 2019 Sep; 58(36):3802-3812. PubMed ID: 31448597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The revitalization of antimicrobial peptides in the resistance era.
    Liu Y; Shi J; Tong Z; Jia Y; Yang B; Wang Z
    Pharmacol Res; 2021 Jan; 163():105276. PubMed ID: 33161137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rediscovery of antimicrobial peptides as therapeutic agents.
    Ryu M; Park J; Yeom JH; Joo M; Lee K
    J Microbiol; 2021 Feb; 59(2):113-123. PubMed ID: 33527313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid peptide ATCUN-sh-Buforin: Influence of the ATCUN charge and stereochemistry on antimicrobial activity.
    Libardo MD; Paul TJ; Prabhakar R; Angeles-Boza AM
    Biochimie; 2015 Jun; 113():143-55. PubMed ID: 25891844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial peptides (AMPs): a patent review (2015-2020).
    Annunziato G; Costantino G
    Expert Opin Ther Pat; 2020 Dec; 30(12):931-947. PubMed ID: 33187458
    [No Abstract]   [Full Text] [Related]  

  • 10. Central Role of the Copper-Binding Motif in the Complex Mechanism of Action of Ixosin: Enhancing Oxidative Damage and Promoting Synergy with Ixosin B.
    Libardo MD; Gorbatyuk VY; Angeles-Boza AM
    ACS Infect Dis; 2016 Jan; 2(1):71-81. PubMed ID: 27622949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, Engineering and Discovery of Novel α-Helical and β-Boomerang Antimicrobial Peptides against Drug Resistant Bacteria.
    Bhattacharjya S; Straus SK
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32796755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of biomarkers for the accurate and sensitive diagnosis of three bacterial pneumonia pathogens using in silico approaches.
    Bakare OO; Keyster M; Pretorius A
    BMC Mol Cell Biol; 2020 Nov; 21(1):82. PubMed ID: 33218302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial Peptides and their Multiple Effects at Sub-Inhibitory Concentrations.
    Casciaro B; Cappiello F; Verrusio W; Cacciafesta M; Mangoni ML
    Curr Top Med Chem; 2020; 20(14):1264-1273. PubMed ID: 32338221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance.
    Lima PG; Oliveira JTA; Amaral JL; Freitas CDT; Souza PFN
    Life Sci; 2021 Aug; 278():119647. PubMed ID: 34043990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine-rich antimicrobial peptides from plants: The future of antimicrobial therapy.
    Srivastava S; Dashora K; Ameta KL; Singh NP; El-Enshasy HA; Pagano MC; Hesham AE; Sharma GD; Sharma M; Bhargava A
    Phytother Res; 2021 Jan; 35(1):256-277. PubMed ID: 32940412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Applications of Aggregation Induced Emission Probes for Antimicrobial Peptide Studies.
    Luu T; Li W; O'Brien-Simpson NM; Hong Y
    Chem Asian J; 2021 May; 16(9):1027-1040. PubMed ID: 33723926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coevolution of Resistance Against Antimicrobial Peptides.
    Baindara P; Ghosh AK; Mandal SM
    Microb Drug Resist; 2020 Aug; 26(8):880-899. PubMed ID: 32119634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically modified and conjugated antimicrobial peptides against superbugs.
    Li W; Separovic F; O'Brien-Simpson NM; Wade JD
    Chem Soc Rev; 2021 Apr; 50(8):4932-4973. PubMed ID: 33710195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu-ATCUN Derivatives of Sub5 Exhibit Enhanced Antimicrobial Activity via Multiple Modes of Action.
    Alexander JL; Thompson Z; Yu Z; Cowan JA
    ACS Chem Biol; 2019 Mar; 14(3):449-458. PubMed ID: 30742402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and Roles of Antimicrobial Peptides in Innate Defense of Airway Mucosa: Potential Implication in Cystic Fibrosis.
    Geitani R; Moubareck CA; Xu Z; Karam Sarkis D; Touqui L
    Front Immunol; 2020; 11():1198. PubMed ID: 32695100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.