These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33524260)

  • 1. Understanding the Strength of the Selenium-Graphene Interfaces for Energy Storage Systems.
    Sharma V; Mitlin D; Datta D
    Langmuir; 2021 Feb; 37(6):2029-2039. PubMed ID: 33524260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing van der Waals Slippery Interfaces to Enhance the Electrochemical Stability of Silicon Film Anodes in Lithium-Ion Batteries.
    Basu S; Suresh S; Ghatak K; Bartolucci SF; Gupta T; Hundekar P; Kumar R; Lu TM; Datta D; Shi Y; Koratkar N
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13442-13451. PubMed ID: 29620865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions.
    Yang H; Tang Y; Yang P
    Nanoscale; 2019 Aug; 11(30):14155-14163. PubMed ID: 31334741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface dependence of electrical contact and graphene doping in graphene/XPtY (X, Y = S, Se, and Te) heterostructures.
    Ju W; Wang D; Zhou Q; Kang D; Li T; Hu G; Li H
    Phys Chem Chem Phys; 2021 Sep; 23(35):19297-19307. PubMed ID: 34524280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorbed Molecules as Interchangeable Dopants and Scatterers with a Van der Waals Bonding Memory in Graphene Sensors.
    Agbonlahor OG; Muruganathan M; Imamura T; Mizuta H
    ACS Sens; 2020 Jul; 5(7):2003-2009. PubMed ID: 32597169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of van der Waals interactions on the adhesion strength at the interface of the hydroxyapatite-titanium biocomposite: a first-principles study.
    Grubova IY; Surmeneva MA; Surmenev RA; Neyts EC
    RSC Adv; 2020 Oct; 10(62):37800-37805. PubMed ID: 35515192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. B, N, and Si Single-Doping at Graphene/Cu (111) Interfaces to Adjust Electrical Properties.
    Li D; Yang P
    Langmuir; 2023 Jul; 39(26):9172-9179. PubMed ID: 37327460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in the interface strength of silicon with surface engineered Ti
    Sharma V; Datta D
    Phys Chem Chem Phys; 2021 Mar; 23(9):5540-5550. PubMed ID: 33651068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. van der Waals Epitaxy of GaSe/Graphene Heterostructure: Electronic and Interfacial Properties.
    Ben Aziza Z; Henck H; Pierucci D; Silly MG; Lhuillier E; Patriarche G; Sirotti F; Eddrief M; Ouerghi A
    ACS Nano; 2016 Oct; 10(10):9679-9686. PubMed ID: 27715006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement Effects of Co Doping on Interfacial Properties of Sn Electrode-Collector: A First-Principles Study.
    Zhang P; Wang Y; Lei W; Zou Y; Jiang W; Ma Z; Lu C
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24648-24658. PubMed ID: 31250629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomically Sharp Interface in an h-BN-epitaxial graphene van der Waals Heterostructure.
    Sediri H; Pierucci D; Hajlaoui M; Henck H; Patriarche G; Dappe YJ; Yuan S; Toury B; Belkhou R; Silly MG; Sirotti F; Boutchich M; Ouerghi A
    Sci Rep; 2015 Nov; 5():16465. PubMed ID: 26585245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles study of cohesion strength and stability of titanium-carbon interfaces using vdW interaction.
    Chen L; Luo J; Wang Q; Xiong L; Gong H
    J Phys Condens Matter; 2020 Apr; 32(14):145001. PubMed ID: 31855858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface orientation effects in crystalline-amorphous silicon interfaces.
    Nolan M; Legesse M; Fagas G
    Phys Chem Chem Phys; 2012 Nov; 14(43):15173-9. PubMed ID: 23038100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Arrangement and Charge Transfer in C
    Ojeda-Aristizabal C; Santos EJG; Onishi S; Yan A; Rasool HI; Kahn S; Lv Y; Latzke DW; Velasco J; Crommie MF; Sorensen M; Gotlieb K; Lin CY; Watanabe K; Taniguchi T; Lanzara A; Zettl A
    ACS Nano; 2017 May; 11(5):4686-4693. PubMed ID: 28437062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterointerface effects in the electrointercalation of van der Waals heterostructures.
    Bediako DK; Rezaee M; Yoo H; Larson DT; Zhao SYF; Taniguchi T; Watanabe K; Brower-Thomas TL; Kaxiras E; Kim P
    Nature; 2018 Jun; 558(7710):425-429. PubMed ID: 29925970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing Na-segregation at the Si/Graphene Interface and Its Implications toward the Na-storage Behavior of Si-Based Electrodes.
    Raghuvanshi PR; Jangid MK; Bhattacharya A; Mukhopadhyay A
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9667-9675. PubMed ID: 35148048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Origin of the Ultrastrong Adhesion between Graphene and a-SiO2: Beyond van der Waals.
    Kumar S; Parks D; Kamrin K
    ACS Nano; 2016 Jul; 10(7):6552-62. PubMed ID: 27347793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indirect Interlayer Bonding in Graphene-Topological Insulator van der Waals Heterostructure: Giant Spin-Orbit Splitting of the Graphene Dirac States.
    Rajput S; Li YY; Weinert M; Li L
    ACS Nano; 2016 Sep; 10(9):8450-6. PubMed ID: 27617796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic properties of graphene-ZnO interface: a density functional theory investigation.
    Fathzadeh M; Fahrvandi H; Nadimi E
    Nanotechnology; 2020 Jan; 31(2):025710. PubMed ID: 31557743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial bonding characteristics between graphene and dielectric substrates.
    Das S; Lahiri D; Agarwal A; Choi W
    Nanotechnology; 2014 Jan; 25(4):045707. PubMed ID: 24399030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.