These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33524635)
1. Identification of MIB producers and odor risk assessment using routine data: A case study of an estuary drinking water reservoir. Su M; Zhu Y; Jia Z; Liu T; Yu J; Burch M; Yang M Water Res; 2021 Mar; 192():116848. PubMed ID: 33524635 [TBL] [Abstract][Full Text] [Related]
2. MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: distribution and odor producing potential. Su M; Yu J; Zhang J; Chen H; An W; Vogt RD; Andersen T; Jia D; Wang J; Yang M Water Res; 2015 Jan; 68():444-53. PubMed ID: 25462751 [TBL] [Abstract][Full Text] [Related]
3. Light as a possible regulator of MIB-producing Planktothrix in source water reservoir, mechanism and in-situ verification. Jia Z; Su M; Liu T; Guo Q; Wang Q; Burch M; Yu J; Yang M Harmful Algae; 2019 Sep; 88():101658. PubMed ID: 31582162 [TBL] [Abstract][Full Text] [Related]
4. Distribution, driving forces, and risk assessment of 2-MIB and its producer in a drinking water source-oriented shallow lake. Shi X; Huang Q; Shen X; Wu J; Nan J; Li J; Lu H; Yang C Environ Sci Pollut Res Int; 2023 Jun; 30(27):71194-71208. PubMed ID: 37162675 [TBL] [Abstract][Full Text] [Related]
5. Using molecular detection for the diversity and occurrence of cyanobacteria and 2-methylisoborneol-producing cyanobacteria in an eutrophicated reservoir in northern China. Qiu P; Chen Y; Li C; Huo D; Bi Y; Wang J; Li Y; Li R; Yu G Environ Pollut; 2021 Nov; 288():117772. PubMed ID: 34273769 [TBL] [Abstract][Full Text] [Related]
6. The predominant phytoplankton of Pseudoanabaena holding specific biosynthesis gene-derived occurrence of 2-MIB in a drinking water reservoir. Huang X; Huang Z; Chen XP; Zhang D; Zhou J; Wang X; Gao N Environ Sci Pollut Res Int; 2018 Jul; 25(19):19134-19142. PubMed ID: 29725924 [TBL] [Abstract][Full Text] [Related]
7. Ecological niche and in-situ control of MIB producers in source water. Su M; Suruzzaman MD; Zhu Y; Lu J; Yu J; Zhang Y; Yang M J Environ Sci (China); 2021 Dec; 110():119-128. PubMed ID: 34593182 [TBL] [Abstract][Full Text] [Related]
8. Seasonal dynamics of odor compounds concentration driven by phytoplankton succession in a subtropical drinking water reservoir, southeast China. Wu T; Zhu G; Wang Z; Zhu M; Xu H J Hazard Mater; 2022 Mar; 425():128056. PubMed ID: 34986576 [TBL] [Abstract][Full Text] [Related]
9. Quantitative PCR based detection system for cyanobacterial geosmin/2-methylisoborneol (2-MIB) events in drinking water sources: Current status and challenges. Devi A; Chiu YT; Hsueh HT; Lin TF Water Res; 2021 Jan; 188():116478. PubMed ID: 33045635 [TBL] [Abstract][Full Text] [Related]
10. Occurrence of swampy/septic odor and possible odorants in source and finished drinking water of major cities across China. Wang C; Yu J; Guo Q; Sun D; Su M; An W; Zhang Y; Yang M Environ Pollut; 2019 Jun; 249():305-310. PubMed ID: 30901644 [TBL] [Abstract][Full Text] [Related]
11. Reducing production of taste and odor by deep-living cyanobacteria in drinking water reservoirs by regulation of water level. Su M; Jia D; Yu J; Vogt RD; Wang J; An W; Yang M Sci Total Environ; 2017 Jan; 574():1477-1483. PubMed ID: 27707573 [TBL] [Abstract][Full Text] [Related]
12. Elucidation of Taste- and Odor-Producing Bacteria and Toxigenic Cyanobacteria in a Midwestern Drinking Water Supply Reservoir by Shotgun Metagenomic Analysis. Otten TG; Graham JL; Harris TD; Dreher TW Appl Environ Microbiol; 2016 Sep; 82(17):5410-20. PubMed ID: 27342564 [TBL] [Abstract][Full Text] [Related]
13. Contrasting patterns of 2-methylisoborneol (MIB) vs. geosmin across depth in a drinking water reservoir are mediated by cyanobacteria and actinobacteria. Chislock MF; Olsen BK; Choi J; Abebe A; Bleier TL; Wilson AE Environ Sci Pollut Res Int; 2021 Jun; 28(24):32005-32014. PubMed ID: 33620686 [TBL] [Abstract][Full Text] [Related]
14. Effects of algae proliferation and density current on the vertical distribution of odor compounds in drinking water reservoirs in summer. Wu T; Zhu G; Zhu M; Xu H; Yang J; Zhao X Environ Pollut; 2021 Nov; 288():117683. PubMed ID: 34237652 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the MIB-producing potential based on real-time qPCR in drinking water reservoirs. Suruzzaman M; Cao T; Lu J; Wang Y; Su M; Yang M Environ Res; 2022 Mar; 204(Pt C):112308. PubMed ID: 34757030 [TBL] [Abstract][Full Text] [Related]
16. Spatial and temporal dynamics of microbes and genes in drinking water reservoirs: Distribution and potential for taste and odor generation. Zhangsun X; Guo H; Du Q; Li N; Xue S; Li R; Ma W; Liu X; Zhang H; Huang T J Hazard Mater; 2024 Nov; 479():135708. PubMed ID: 39217936 [TBL] [Abstract][Full Text] [Related]
17. MIB-derived odor management based upon hydraulic regulation in small drinking water reservoirs: Principle and application. Lu J; Su M; Su Y; Fang J; Burch M; Cao T; Wu B; Yu J; Yang M Water Res; 2023 Oct; 244():120485. PubMed ID: 37611357 [TBL] [Abstract][Full Text] [Related]
18. Thermal stratification controls taste and odour compounds by regulating the phytoplankton community in a large subtropical water source reservoir (Xin'anjiang Reservoir). Yue Z; Chen Y; Wu Z; Cheng X; Bao Z; Deng X; Shen H; Liu J; Xie P; Chen J J Hazard Mater; 2024 Mar; 466():133539. PubMed ID: 38271873 [TBL] [Abstract][Full Text] [Related]
19. An alternative method to quantify 2-MIB producing cyanobacteria in drinking water reservoirs: Method development and field applications. Chiu YT; Yen HK; Lin TF Environ Res; 2016 Nov; 151():618-627. PubMed ID: 27607443 [TBL] [Abstract][Full Text] [Related]
20. Driving forces for the growth of MIB-producing Planktothricoides raciborskii in a low-latitude reservoir. Lu J; Su M; Su Y; Wu B; Cao T; Fang J; Yu J; Zhang H; Yang M Water Res; 2022 Jul; 220():118670. PubMed ID: 35640507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]