These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 33524723)
81. Efficient Selective Sorption of Cationic Organic Pollutant from Water and Its Photocatalytic Degradation by AlVO₄/g-C₃N₄ Nanocomposite. Dutta DP; Dagar D J Nanosci Nanotechnol; 2020 Apr; 20(4):2179-2194. PubMed ID: 31492227 [TBL] [Abstract][Full Text] [Related]
82. Noble metal-free NiS Li H; Wang M; Wei Y; Long F J Colloid Interface Sci; 2019 Jan; 534():343-349. PubMed ID: 30243175 [TBL] [Abstract][Full Text] [Related]
83. Fabrication of a Co(OH) Sahoo DP; Nayak S; Reddy KH; Martha S; Parida K Inorg Chem; 2018 Apr; 57(7):3840-3854. PubMed ID: 29528221 [TBL] [Abstract][Full Text] [Related]
84. Designing CdS-Based Ternary Heterostructures Consisting of Co-Metal and CoO Moniruddin M; Oppong E; Stewart D; McCleese C; Roy A; Warzywoda J; Nuraje N Inorg Chem; 2019 Sep; 58(18):12325-12333. PubMed ID: 31483615 [TBL] [Abstract][Full Text] [Related]
86. mpg-C₃N₄/Ag₂O Nanocomposites Photocatalysts with Enhanced Visible-Light Photocatalytic Performance. Jiang Z; Le S; Xie Y; Huang Q; Wang B; Jiang T J Nanosci Nanotechnol; 2019 Feb; 19(2):721-728. PubMed ID: 30360148 [TBL] [Abstract][Full Text] [Related]
87. Efficient photocatalytic degradation of acrylonitrile by Sulfur-Bismuth co-doped F-TiO Li H; Qiu L; Bharti B; Dai F; Zhu M; Ouyang F; Lin L Chemosphere; 2020 Jun; 249():126135. PubMed ID: 32078853 [TBL] [Abstract][Full Text] [Related]
88. Ethylenediamine-assisted growth of multi-dimensional ZnS nanostructures and study of its charge transfer mechanism on supercapacitor electrode and photocatalytic performance. Bhushan M; Jha R; Sharma R; Bhardwaj R Nanotechnology; 2020 Mar; 31(23):235602. PubMed ID: 32053814 [TBL] [Abstract][Full Text] [Related]
89. Photocatalytic Degradation of Phenol Using Photodeposited Pt Nanoparticles on Titania. Nobijari LA; Schwarze M; Tasbihi M J Nanosci Nanotechnol; 2020 Feb; 20(2):1056-1065. PubMed ID: 31383105 [TBL] [Abstract][Full Text] [Related]
90. Green Synthesis, Optical, Structural, Photocatalytic, Fluorescence Quenching and Degradation Studies of ZnS Nanoparticles. Ayodhya D; Veerabhadram G J Fluoresc; 2016 Nov; 26(6):2165-2175. PubMed ID: 27553031 [TBL] [Abstract][Full Text] [Related]
91. Efficient Electron Transfer across a ZnO-MoS Kumar S; Reddy NL; Kushwaha HS; Kumar A; Shankar MV; Bhattacharyya K; Halder A; Krishnan V ChemSusChem; 2017 Sep; 10(18):3588-3603. PubMed ID: 28703495 [TBL] [Abstract][Full Text] [Related]
92. Recent Progress of Transition Metal Phosphides for Photocatalytic Hydrogen Evolution. Hong LF; Guo RT; Yuan Y; Ji XY; Lin ZD; Li ZS; Pan WG ChemSusChem; 2021 Jan; 14(2):539-557. PubMed ID: 33216454 [TBL] [Abstract][Full Text] [Related]
94. What is the transfer mechanism of photogenerated carriers for the nanocomposite photocatalyst Ag3PO4/g-C3N4, band-band transfer or a direct Z-scheme? Meng S; Ning X; Zhang T; Chen SF; Fu X Phys Chem Chem Phys; 2015 May; 17(17):11577-85. PubMed ID: 25864380 [TBL] [Abstract][Full Text] [Related]
95. CdS/ZnS core-shell nanorod heterostructures co-deposited with ultrathin MoS Zhang X; Puttaswamy M; Bai H; Hou B; Kumar Verma S J Colloid Interface Sci; 2024 Jul; 665():430-442. PubMed ID: 38485632 [TBL] [Abstract][Full Text] [Related]
96. Photocatalytic Hydrogen Evolution from Water Splitting Using Core-Shell Structured Cu/ZnS/COF Composites. Wang W; Li B; Yang HJ; Liu Y; Gurusamy L; Karuppasamy L; Wu JJ Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947731 [TBL] [Abstract][Full Text] [Related]
97. Ag-Modified g-C Liu R; Yang W; He G; Zheng W; Li M; Tao W; Tian M ACS Omega; 2020 Aug; 5(31):19615-19624. PubMed ID: 32803056 [TBL] [Abstract][Full Text] [Related]
98. Efficient hydrogen production at a rationally designed MoSe Li H; Hao X; Gong H; Jin Z; Zhao T J Colloid Interface Sci; 2021 Mar; 586():84-94. PubMed ID: 33162036 [TBL] [Abstract][Full Text] [Related]
99. Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production. Hou J; Yang C; Cheng H; Wang Z; Jiao S; Zhu H Phys Chem Chem Phys; 2013 Oct; 15(37):15660-8. PubMed ID: 23942887 [TBL] [Abstract][Full Text] [Related]
100. Design of a direct Z-scheme photocatalyst: preparation and characterization of Bi₂O₃/g-C₃N₄ with high visible light activity. Zhang J; Hu Y; Jiang X; Chen S; Meng S; Fu X J Hazard Mater; 2014 Sep; 280():713-22. PubMed ID: 25232654 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]