These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 33524824)
1. Applications of deep learning in fundus images: A review. Li T; Bo W; Hu C; Kang H; Liu H; Wang K; Fu H Med Image Anal; 2021 Apr; 69():101971. PubMed ID: 33524824 [TBL] [Abstract][Full Text] [Related]
2. Ophthalmic diagnosis using deep learning with fundus images - A critical review. Sengupta S; Singh A; Leopold HA; Gulati T; Lakshminarayanan V Artif Intell Med; 2020 Jan; 102():101758. PubMed ID: 31980096 [TBL] [Abstract][Full Text] [Related]
3. Artery-vein segmentation in fundus images using a fully convolutional network. Hemelings R; Elen B; Stalmans I; Van Keer K; De Boever P; Blaschko MB Comput Med Imaging Graph; 2019 Sep; 76():101636. PubMed ID: 31288217 [TBL] [Abstract][Full Text] [Related]
4. REFUGE Challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Orlando JI; Fu H; Barbosa Breda J; van Keer K; Bathula DR; Diaz-Pinto A; Fang R; Heng PA; Kim J; Lee J; Lee J; Li X; Liu P; Lu S; Murugesan B; Naranjo V; Phaye SSR; Shankaranarayana SM; Sikka A; Son J; van den Hengel A; Wang S; Wu J; Wu Z; Xu G; Xu Y; Yin P; Li F; Zhang X; Xu Y; Bogunović H Med Image Anal; 2020 Jan; 59():101570. PubMed ID: 31630011 [TBL] [Abstract][Full Text] [Related]
5. Multi-degradation-adaptation network for fundus image enhancement with degradation representation learning. Guo R; Xu Y; Tompkins A; Pagnucco M; Song Y Med Image Anal; 2024 Oct; 97():103273. PubMed ID: 39029157 [TBL] [Abstract][Full Text] [Related]
6. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057 [TBL] [Abstract][Full Text] [Related]
7. A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model. Gegundez-Arias ME; Marin-Santos D; Perez-Borrero I; Vasallo-Vazquez MJ Comput Methods Programs Biomed; 2021 Jun; 205():106081. PubMed ID: 33882418 [TBL] [Abstract][Full Text] [Related]
8. Predicting systemic diseases in fundus images: systematic review of setting, reporting, bias, and models' clinical availability in deep learning studies. Li Y; Zhang R; Dong L; Shi X; Zhou W; Wu H; Li H; Yu C; Wei W Eye (Lond); 2024 May; 38(7):1246-1251. PubMed ID: 38238576 [TBL] [Abstract][Full Text] [Related]
9. Development of a deep learning-based image eligibility verification system for detecting and filtering out ineligible fundus images: A multicentre study. Li Z; Jiang J; Zhou H; Zheng Q; Liu X; Chen K; Weng H; Chen W Int J Med Inform; 2021 Mar; 147():104363. PubMed ID: 33388480 [TBL] [Abstract][Full Text] [Related]
10. Applications of deep learning for detecting ophthalmic diseases with ultrawide-field fundus images. Tang QQ; Yang XG; Wang HQ; Wu DW; Zhang MX Int J Ophthalmol; 2024; 17(1):188-200. PubMed ID: 38239939 [TBL] [Abstract][Full Text] [Related]
11. A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography. Grassmann F; Mengelkamp J; Brandl C; Harsch S; Zimmermann ME; Linkohr B; Peters A; Heid IM; Palm C; Weber BHF Ophthalmology; 2018 Sep; 125(9):1410-1420. PubMed ID: 29653860 [TBL] [Abstract][Full Text] [Related]
12. An ensemble deep learning based approach for red lesion detection in fundus images. Orlando JI; Prokofyeva E; Del Fresno M; Blaschko MB Comput Methods Programs Biomed; 2018 Jan; 153():115-127. PubMed ID: 29157445 [TBL] [Abstract][Full Text] [Related]
13. Deep learning can generate traditional retinal fundus photographs using ultra-widefield images via generative adversarial networks. Yoo TK; Ryu IH; Kim JK; Lee IS; Kim JS; Kim HK; Choi JY Comput Methods Programs Biomed; 2020 Dec; 197():105761. PubMed ID: 32961385 [TBL] [Abstract][Full Text] [Related]
14. Multi-task deep learning-based survival analysis on the prognosis of late AMD using the longitudinal data in AREDS. Ghahramani G; Brendel M; Lin M; Chen Q; Keenan T; Chen K; Chew E; Lu Z; Peng Y; Wang F AMIA Annu Symp Proc; 2021; 2021():506-515. PubMed ID: 35308963 [TBL] [Abstract][Full Text] [Related]
15. Optic disc and optic cup segmentation based on anatomy guided cascade network. Bian X; Luo X; Wang C; Liu W; Lin X Comput Methods Programs Biomed; 2020 Dec; 197():105717. PubMed ID: 32957060 [TBL] [Abstract][Full Text] [Related]
16. Microaneurysm detection in fundus images using a two-step convolutional neural network. Eftekhari N; Pourreza HR; Masoudi M; Ghiasi-Shirazi K; Saeedi E Biomed Eng Online; 2019 May; 18(1):67. PubMed ID: 31142335 [TBL] [Abstract][Full Text] [Related]
17. A Multi-Label Deep Learning Model with Interpretable Grad-CAM for Diabetic Retinopathy Classification. Jiang H; Xu J; Shi R; Yang K; Zhang D; Gao M; Ma H; Qian W Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1560-1563. PubMed ID: 33018290 [TBL] [Abstract][Full Text] [Related]
18. Pathological myopia classification with simultaneous lesion segmentation using deep learning. Hemelings R; Elen B; Blaschko MB; Jacob J; Stalmans I; De Boever P Comput Methods Programs Biomed; 2021 Feb; 199():105920. PubMed ID: 33412285 [TBL] [Abstract][Full Text] [Related]
19. BTS-DSN: Deeply supervised neural network with short connections for retinal vessel segmentation. Guo S; Wang K; Kang H; Zhang Y; Gao Y; Li T Int J Med Inform; 2019 Jun; 126():105-113. PubMed ID: 31029251 [TBL] [Abstract][Full Text] [Related]
20. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey. Asiri N; Hussain M; Al Adel F; Alzaidi N Artif Intell Med; 2019 Aug; 99():101701. PubMed ID: 31606116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]