BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33525089)

  • 1. Motion and trajectory planning modeling for mobile landing mechanism systems based on improved genetic algorithm.
    Zhou J; Jia S; Chen J; Chen M
    Math Biosci Eng; 2020 Nov; 18(1):231-252. PubMed ID: 33525089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal time-jerk trajectory planning for the landing and walking integration mechanism using adaptive genetic algorithm method.
    Zhou J; Chen M; Chen J; Jia S
    Rev Sci Instrum; 2020 Apr; 91(4):044501. PubMed ID: 32357692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimum-Time Trajectory Generation for Wheeled Mobile Systems Using Bézier Curves with Constraints on Velocity, Acceleration and Jerk.
    Benko Loknar M; Klančar G; Blažič S
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trajectory optimization of the 6-degrees-of-freedom high-speed parallel robot based on B-spline curve.
    Mei J; Zhang F; Zang J; Zhao Y; Yan H
    Sci Prog; 2020; 103(1):36850419880115. PubMed ID: 31829888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lunar Surface Fault-Tolerant Soft-Landing Performance and Experiment for a Six-Legged Movable Repetitive Lander.
    Yin K; Zhou S; Sun Q; Gao F
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Point-to-point trajectory planning for space robots based on jerk constraints.
    Xiao P; Ju H; Li Q
    Rev Sci Instrum; 2021 Sep; 92(9):094501. PubMed ID: 34598527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-Optimal Asymmetric S-Curve Trajectory Planning of Redundant Manipulators under Kinematic Constraints.
    Liu T; Cui J; Li Y; Gao S; Zhu M; Chen L
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A PSO-enhanced Gauss pseudospectral method to solve trajectory planning for autonomous underwater vehicles.
    Gan W; Su L; Chu Z
    Math Biosci Eng; 2023 May; 20(7):11713-11731. PubMed ID: 37501417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trajectory Planning and Simulation Study of Redundant Robotic Arm for Upper Limb Rehabilitation Based on Back Propagation Neural Network and Genetic Algorithm.
    Qie X; Kang C; Zong G; Chen S
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectory Planning of Autonomous Underwater Vehicles Based on Gauss Pseudospectral Method.
    Gan W; Su L; Chu Z
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-optimal trajectory planning based on event-trigger and conditional proportional control.
    Chen G; Wei N; Yan L; Lu H; Li J
    PLoS One; 2023; 18(1):e0273640. PubMed ID: 36716304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A trajectory planning method for a casting sorting robotic arm based on a nature-inspired Genghis Khan shark optimized algorithm.
    Wang C; Yao X; Ding F; Yu Z
    Math Biosci Eng; 2024 Feb; 21(2):3364-3390. PubMed ID: 38454732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for trajectory planning of cooperative mobile manipulators.
    Bolandi H; Ehyaei AF
    J Med Signals Sens; 2011 Jan; 1(1):24-35. PubMed ID: 22606656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization based trajectory planning for real-time 6DoF robotic patient motion compensation systems.
    Liu X; Wiersma RD
    PLoS One; 2019; 14(1):e0210385. PubMed ID: 30633766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Safe Trajectory Planning for Incremental Robots Based on a Spatiotemporal Variable-Step-Size A* Algorithm.
    Hu H; Wen X; Hu J; Chen H; Xia C; Zhang H
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic cam motion generation with special reference to constrained velocity, acceleration, and jerk.
    Liao CS; Jeng SL; Chieng WH
    ISA Trans; 2004 Jul; 43(3):427-43. PubMed ID: 15272797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application improvement of A* algorithm in intelligent vehicle trajectory planning.
    Xiong X; Min H; Yu Y; Wang P
    Math Biosci Eng; 2020 Nov; 18(1):1-21. PubMed ID: 33525078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Cartesian-Based Trajectory Optimization with Jerk Constraints for a Robot.
    Fan Z; Jia K; Zhang L; Zou F; Du Z; Liu M; Cao Y; Zhang Q
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal Trajectory Planning for Wheeled Mobile Robots under Localization Uncertainty and Energy Efficiency Constraints.
    Zhang X; Huang Y; Rong Y; Li G; Wang H; Liu C
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of improved ant colony optimization in mobile robot trajectory planning.
    Li X; Wang L
    Math Biosci Eng; 2020 Sep; 17(6):6756-6774. PubMed ID: 33378876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.