BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33525312)

  • 1. Automatic Fuzzy Logic-Based Maize Common Rust Disease Severity Predictions with Thresholding and Deep Learning.
    Sibiya M; Sumbwanyambe M
    Pathogens; 2021 Jan; 10(2):. PubMed ID: 33525312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of peripheral blood cell images using convolutional neural networks.
    Acevedo A; Alférez S; Merino A; Puigví L; Rodellar J
    Comput Methods Programs Biomed; 2019 Oct; 180():105020. PubMed ID: 31425939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are All Deep Learning Architectures Alike for Point-of-Care Ultrasound?: Evidence From a Cardiac Image Classification Model Suggests Otherwise.
    Blaivas M; Blaivas L
    J Ultrasound Med; 2020 Jun; 39(6):1187-1194. PubMed ID: 31872477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease.
    Shoaib M; Hussain T; Shah B; Ullah I; Shah SM; Ali F; Park SH
    Front Plant Sci; 2022; 13():1031748. PubMed ID: 36275583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multimodal convolutional neuro-fuzzy network for emotion understanding of movie clips.
    Nguyen TL; Kavuri S; Lee M
    Neural Netw; 2019 Oct; 118():208-219. PubMed ID: 31299625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of wheat diseases using deep learning networks with field and glasshouse images.
    Long M; Hartley M; Morris RJ; Brown JKM
    Plant Pathol; 2023 Apr; 72(3):536-547. PubMed ID: 38516179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explainable deep learning model for automatic mulberry leaf disease classification.
    Nahiduzzaman M; Chowdhury MEH; Salam A; Nahid E; Ahmed F; Al-Emadi N; Ayari MA; Khandakar A; Haider J
    Front Plant Sci; 2023; 14():1175515. PubMed ID: 37794930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDSE-Lite: lightweight framework for plant disease severity estimation based on Convolutional Autoencoder and Few-Shot Learning.
    Bedi P; Gole P; Marwaha S
    Front Plant Sci; 2023; 14():1319894. PubMed ID: 38259916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network.
    Han SS; Park GH; Lim W; Kim MS; Na JI; Park I; Chang SE
    PLoS One; 2018; 13(1):e0191493. PubMed ID: 29352285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Deep Learning-Based Framework for Retinal Disease Classification.
    Choudhary A; Ahlawat S; Urooj S; Pathak N; Lay-Ekuakille A; Sharma N
    Healthcare (Basel); 2023 Jan; 11(2):. PubMed ID: 36673578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Transfer Learning with Deep Convolutional Neural Networks for Screening Osteoporosis in Dental Panoramic Radiographs.
    Lee KS; Jung SK; Ryu JJ; Shin SW; Choi J
    J Clin Med; 2020 Feb; 9(2):. PubMed ID: 32024114
    [No Abstract]   [Full Text] [Related]  

  • 13. Maize leaf disease recognition using PRF-SVM integration: a breakthrough technique.
    Bachhal P; Kukreja V; Ahuja S; Lilhore UK; Simaiya S; Bijalwan A; Alroobaea R; Algarni S
    Sci Rep; 2024 May; 14(1):10219. PubMed ID: 38702373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated polyp segmentation for colonoscopy images: A method based on convolutional neural networks and ensemble learning.
    Guo X; Zhang N; Guo J; Zhang H; Hao Y; Hang J
    Med Phys; 2019 Dec; 46(12):5666-5676. PubMed ID: 31610020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An effective deep learning approach for the classification of Bacteriosis in peach leave.
    Akbar M; Ullah M; Shah B; Khan RU; Hussain T; Ali F; Alenezi F; Syed I; Kwak KS
    Front Plant Sci; 2022; 13():1064854. PubMed ID: 36507379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RGB image-based method for phenotyping rust disease progress in pea leaves using R.
    Osuna-Caballero S; Olivoto T; Jiménez-Vaquero MA; Rubiales D; Rispail N
    Plant Methods; 2023 Aug; 19(1):86. PubMed ID: 37605206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning.
    DeChant C; Wiesner-Hanks T; Chen S; Stewart EL; Yosinski J; Gore MA; Nelson RJ; Lipson H
    Phytopathology; 2017 Nov; 107(11):1426-1432. PubMed ID: 28653579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The classification of wheat yellow rust disease based on a combination of textural and deep features.
    Hayıt T; Erbay H; Varçın F; Hayıt F; Akci N
    Multimed Tools Appl; 2023 May; ():1-19. PubMed ID: 37362723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modern deep learning framework in robot vision for automated bean leaves diseases detection.
    Abed SH; Al-Waisy AS; Mohammed HJ; Al-Fahdawi S
    Int J Intell Robot Appl; 2021; 5(2):235-251. PubMed ID: 33948485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.