These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33525488)

  • 21. Enhancing diffuse correlation spectroscopy pulsatile cerebral blood flow signal with near-infrared spectroscopy photoplethysmography.
    Wu KC; Martin A; Renna M; Robinson M; Ozana N; Carp SA; Franceschini MA
    Neurophotonics; 2023 Jul; 10(3):035008. PubMed ID: 37680339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detectability of hemodynamic oscillations in cerebral cortex through functional near-infrared spectroscopy: a simulation study.
    Contini L; Amendola C; Contini D; Torricelli A; Spinelli L; Re R
    Neurophotonics; 2024 Jul; 11(3):035001. PubMed ID: 38962430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noninvasively measuring the hemodynamic effects of massage on skeletal muscle: a novel hybrid near-infrared diffuse optical instrument.
    Munk N; Symons B; Shang Y; Cheng R; Yu G
    J Bodyw Mov Ther; 2012 Jan; 16(1):22-8. PubMed ID: 22196423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterizing dynamic cerebral vascular reactivity using a hybrid system combining time-resolved near-infrared and diffuse correlation spectroscopy.
    Milej D; Shahid M; Abdalmalak A; Rajaram A; Diop M; St Lawrence K
    Biomed Opt Express; 2020 Aug; 11(8):4571-4585. PubMed ID: 32923065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual-slope imaging of cerebral hemodynamics with frequency-domain near-infrared spectroscopy.
    Blaney G; Fernandez C; Sassaroli A; Fantini S
    Neurophotonics; 2023 Jan; 10(1):013508. PubMed ID: 36601543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of changes in tissue optical properties on near-infrared diffuse correlation spectroscopy measures of skeletal muscle blood flow.
    Bartlett MF; Jordan SM; Hueber DM; Nelson MD
    J Appl Physiol (1985); 2021 Apr; 130(4):1183-1195. PubMed ID: 33571054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of acetazolamide on the micro- and macro-vascular cerebral hemodynamics: a diffuse optical and transcranial doppler ultrasound study.
    Zirak P; Delgado-Mederos R; Martí-Fàbregas J; Durduran T
    Biomed Opt Express; 2010 Nov; 1(5):1443-1459. PubMed ID: 21258561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time domain functional NIRS imaging for human brain mapping.
    Torricelli A; Contini D; Pifferi A; Caffini M; Re R; Zucchelli L; Spinelli L
    Neuroimage; 2014 Jan; 85 Pt 1():28-50. PubMed ID: 23747285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Near infrared spectroscopy: experience on esophageal atresia infants.
    Conforti A; Giliberti P; Mondi V; Valfré L; Sgro S; Picardo S; Bagolan P; Dotta A
    J Pediatr Surg; 2014 Jul; 49(7):1064-8. PubMed ID: 24952789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-modal diffuse optical spectroscopy for high-speed monitoring and wide-area mapping of tissue optical properties and hemodynamics.
    Lam J; Hill B; Quang T; Amelard R; Kim S; Yazdi H; Warren R; Cutler K; Tromberg B
    J Biomed Opt; 2021 Aug; 26(8):. PubMed ID: 34390234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-domain NIRS system based on supercontinuum light source and multi-wavelength detection: validation for tissue oxygenation studies.
    Sudakou A; Lange F; Isler H; Lanka P; Wojtkiewicz S; Sawosz P; Ostojic D; Wolf M; Pifferi A; Tachtsidis I; Liebert A; Gerega A
    Biomed Opt Express; 2021 Oct; 12(10):6629-6650. PubMed ID: 34745761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near-infrared diffuse correlation spectroscopy: the future of non-invasive assessment of skeletal muscle oxygenation?
    Carr J
    J Physiol; 2019 Aug; 597(15):3795-3797. PubMed ID: 31177548
    [No Abstract]   [Full Text] [Related]  

  • 33. Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy.
    Seong M; Phillips Z; Mai PM; Yeo C; Song C; Lee K; Kim JG
    J Biomed Opt; 2016 Feb; 21(2):27001. PubMed ID: 26886805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy for the neuromonitoring of the premature newborn brain.
    Giovannella M; Contini D; Pagliazzi M; Pifferi A; Spinelli L; Erdmann R; Donat R; Rocchetti I; Rehberger M; König N; Schmitt R; Torricelli A; Durduran T; Weigel UM
    Neurophotonics; 2019 Apr; 6(2):025007. PubMed ID: 31093515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hemodynamic monitoring of Chlorin e6-mediated photodynamic therapy using diffuse optical measurements.
    Dong J; Toh HJ; Thong PS; Tee CS; Bi R; Soo KC; Lee K
    J Photochem Photobiol B; 2014 Nov; 140():163-72. PubMed ID: 25146878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy.
    Vignal C; Boumans T; Montcel B; Ramstein S; Verhoye M; Van Audekerke J; Mathevon N; Van der Linden A; Mottin S
    Phys Med Biol; 2008 May; 53(10):2457-70. PubMed ID: 18424882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of power spectral density of microvascular hemodynamics in skeletal muscles at very low and low-frequency via near-infrared diffuse optical spectroscopies.
    Amendola C; Buttafava M; Carteano T; Contini L; Cortese L; Durduran T; Frabasile L; Guadagno CN; Karadeinz U; Lacerenza M; Mesquida J; Parsa S; Re R; Sanoja Garcia D; Konugolu Venkata Sekar S; Spinelli L; Torricelli A; Tosi A; Weigel UM; Yaqub MA; Zanoletti M; Contini D
    Biomed Opt Express; 2023 Nov; 14(11):5994-6015. PubMed ID: 38021143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring spinal cord hemodynamics and tissue oxygenation: a review of the literature with special focus on the near-infrared spectroscopy technique.
    Rashnavadi T; Macnab A; Cheung A; Shadgan A; Kwon BK; Shadgan B
    Spinal Cord; 2019 Aug; 57(8):617-625. PubMed ID: 31164734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue Monitoring with Three-Wavelength Light Emitting Diode-Based Near-Infrared Spectroscopy.
    Olenczak JB; Murariu D; Ikeda K; Thiele RH; Campbell CA
    J Reconstr Microsurg; 2016 Nov; 32(9):712-718. PubMed ID: 27542109
    [No Abstract]   [Full Text] [Related]  

  • 40. The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments.
    Ferrari M; Muthalib M; Quaresima V
    Philos Trans A Math Phys Eng Sci; 2011 Nov; 369(1955):4577-90. PubMed ID: 22006907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.