These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

621 related articles for article (PubMed ID: 33525517)

  • 1. Omics and CRISPR-Cas9 Approaches for Molecular Insight, Functional Gene Analysis, and Stress Tolerance Development in Crops.
    Razzaq MK; Aleem M; Mansoor S; Khan MA; Rauf S; Iqbal S; Siddique KHM
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33525517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR-Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review.
    Debbarma J; Sarki YN; Saikia B; Boruah HPD; Singha DL; Chikkaputtaiah C
    Mol Biotechnol; 2019 Feb; 61(2):153-172. PubMed ID: 30600447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants.
    Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B
    Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses.
    Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP
    Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato.
    Tran MT; Doan DTH; Kim J; Song YJ; Sung YW; Das S; Kim EJ; Son GH; Kim SH; Van Vu T; Kim JY
    Plant Cell Rep; 2021 Jun; 40(6):999-1011. PubMed ID: 33074435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Omics: The way forward to enhance abiotic stress tolerance in
    Raza A; Razzaq A; Mehmood SS; Hussain MA; Wei S; He H; Zaman QU; Xuekun Z; Hasanuzzaman M
    GM Crops Food; 2021 Jan; 12(1):251-281. PubMed ID: 33464960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises.
    Rasheed A; Gill RA; Hassan MU; Mahmood A; Qari S; Zaman QU; Ilyas M; Aamer M; Batool M; Li H; Wu Z
    Curr Issues Mol Biol; 2021 Nov; 43(3):1950-1976. PubMed ID: 34889892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets.
    Numan M; Serba DD; Ligaba-Osena A
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 opens new horizon of crop improvement under stress condition.
    Patra S; Chatterjee D; Basak S; Sen S; Mandal A
    Biochim Biophys Acta Gen Subj; 2024 Oct; 1868(10):130685. PubMed ID: 39079650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas9 mediated understanding of plants' abiotic stress-responsive genes to combat changing climatic patterns.
    Choudry MW; Riaz R; Nawaz P; Ashraf M; Ijaz B; Bakhsh A
    Funct Integr Genomics; 2024 Jul; 24(4):132. PubMed ID: 39078500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops.
    Li T; Wang YH; Liu JX; Feng K; Xu ZS; Xiong AS
    Crit Rev Biotechnol; 2019 Aug; 39(5):680-692. PubMed ID: 31068014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revolutionize Genetic Studies and Crop Improvement with High-Throughput and Genome-Scale CRISPR/Cas9 Gene Editing Technology.
    Yang N; Wang R; Zhao Y
    Mol Plant; 2017 Sep; 10(9):1141-1143. PubMed ID: 28803899
    [No Abstract]   [Full Text] [Related]  

  • 17. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system.
    Dheer P; Rautela I; Sharma V; Dhiman M; Sharma A; Sharma N; Sharma MD
    Gene; 2020 Aug; 753():144795. PubMed ID: 32450202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving environmental stress resilience in crops by genome editing: insights from extremophile plants.
    Kouhen M; García-Caparrós P; Twyman RM; Abdelly C; Mahmoudi H; Schillberg S; Debez A
    Crit Rev Biotechnol; 2023 Jun; 43(4):559-574. PubMed ID: 35606905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cas9-based genetic engineering for crop improvement under drought stress.
    Sami A; Xue Z; Tazein S; Arshad A; He Zhu Z; Ping Chen Y; Hong Y; Tian Zhu X; Jin Zhou K
    Bioengineered; 2021 Dec; 12(1):5814-5829. PubMed ID: 34506262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.