These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 33525538)
1. Personalized Human Activity Recognition Based on Integrated Wearable Sensor and Transfer Learning. Fu Z; He X; Wang E; Huo J; Huang J; Wu D Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33525538 [TBL] [Abstract][Full Text] [Related]
2. Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors. Vuong TH; Doan T; Takasu A Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139567 [TBL] [Abstract][Full Text] [Related]
3. Wearable Sensors for Activity Recognition in Ultimate Frisbee Using Convolutional Neural Networks and Transfer Learning. Link J; Perst T; Stoeve M; Eskofier BM Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408174 [TBL] [Abstract][Full Text] [Related]
4. Personalized Human Activity Recognition using Wearables: A Manifold Learning-based Knowledge Transfer. Saeedi R; Sasani K; Norgaard S; Gebremedhin AH Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1193-1196. PubMed ID: 30440604 [TBL] [Abstract][Full Text] [Related]
5. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network. Steven Eyobu O; Han DS Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377 [TBL] [Abstract][Full Text] [Related]
6. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices. Bhat G; Tran N; Shill H; Ogras UY Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046 [TBL] [Abstract][Full Text] [Related]
7. HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models. Poulose A; Kim JH; Han DS Comput Intell Neurosci; 2022; 2022():1808990. PubMed ID: 36248917 [TBL] [Abstract][Full Text] [Related]
8. Segment-Based Unsupervised Learning Method in Sensor-Based Human Activity Recognition. Takenaka K; Kondo K; Hasegawa T Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896542 [TBL] [Abstract][Full Text] [Related]
9. Feature Fusion of a Deep-Learning Algorithm into Wearable Sensor Devices for Human Activity Recognition. Yen CT; Liao JX; Huang YK Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960388 [TBL] [Abstract][Full Text] [Related]
10. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices. Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895 [TBL] [Abstract][Full Text] [Related]
11. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network Huynh-The T; Hua CH; Kim DS Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400 [TBL] [Abstract][Full Text] [Related]
12. MM-HAR: Multi-Modal Human Activity Recognition Using Consumer Smartwatch and Earbuds. Rashid N; Nemati E; Ahmed MY; Kuang J; Gao JA Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083061 [TBL] [Abstract][Full Text] [Related]
13. A Novel Segmentation Scheme with Multi-Probability Threshold for Human Activity Recognition Using Wearable Sensors. Zhou B; Wang C; Huan Z; Li Z; Chen Y; Gao G; Li H; Dong C; Liang J Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236542 [TBL] [Abstract][Full Text] [Related]
14. Hybrid Learning Models for IMU-Based HAR with Feature Analysis and Data Correction. Tseng YH; Wen CY Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765863 [TBL] [Abstract][Full Text] [Related]
15. Learning Compact Features for Human Activity Recognition Via Probabilistic First-Take-All. Ye J; Qi GJ; Zhuang N; Hu H; Hua KA IEEE Trans Pattern Anal Mach Intell; 2020 Jan; 42(1):126-139. PubMed ID: 30296212 [TBL] [Abstract][Full Text] [Related]
16. Wearable Sensor-Based Residual Multifeature Fusion Shrinkage Networks for Human Activity Recognition. Zeng F; Guo M; Tan L; Guo F; Liu X Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339474 [TBL] [Abstract][Full Text] [Related]
17. Selective Ensemble Based on Extreme Learning Machine for Sensor-Based Human Activity Recognition. Tian Y; Zhang J; Chen L; Geng Y; Wang X Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31398938 [TBL] [Abstract][Full Text] [Related]
18. Human Activity Recognition in a Free-Living Environment Using an Ear-Worn Motion Sensor. Boborzi L; Decker J; Rezaei R; Schniepp R; Wuehr M Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732771 [TBL] [Abstract][Full Text] [Related]
19. Learning the Orientation of a Loosely-Fixed Wearable IMU Relative to the Body Improves the Recognition Rate of Human Postures and Activities. Del Rosario MB; Lovell NH; Redmond SJ Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31248016 [TBL] [Abstract][Full Text] [Related]
20. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems. Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]