BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 33525567)

  • 1. Evaluating the Possibility of Translating Technological Advances in Non-Invasive Continuous Lactate Monitoring into Critical Care.
    Crapnell RD; Tridente A; Banks CE; Dempsey-Hibbert NC
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33525567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Lactate Measurement Devices and Implications for Critical Care: A Literature Review.
    Chavez J; Glaser S; Krom Z
    Crit Care Nurs Q; 2020; 43(3):269-273. PubMed ID: 32433067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical evaluation of a novel subcutaneous lactate monitor.
    Dror N; Weidling J; White S; Ortenzio F; Shreim S; Keating MT; Pham H; Radom-Aizik S; Botvinick E
    J Clin Monit Comput; 2022 Apr; 36(2):537-543. PubMed ID: 33837904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood lactate monitoring in critically ill patients: a systematic health technology assessment.
    Jansen TC; van Bommel J; Bakker J
    Crit Care Med; 2009 Oct; 37(10):2827-39. PubMed ID: 19707124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous and Non-Invasive Lactate Monitoring Techniques in Critical Care Patients.
    Lafuente JL; González S; Aibar C; Rivera D; Avilés E; Beunza JJ
    Biosensors (Basel); 2024 Mar; 14(3):. PubMed ID: 38534255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near Infrared Spectrometric Investigations on the behaviour of Lactate.
    Baishya N; Budidha K; Mamouei M; Qassem M; Vadgama P; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5769-5772. PubMed ID: 31947163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Continuous Lactate Monitoring Systems within a Heparinized In Vivo Porcine Model Intravenously and Subcutaneously.
    Wolf A; Renehan K; Ho KKY; Carr BD; Chen CV; Cornell MS; Ye M; Rojas-Peña A; Chen H
    Biosensors (Basel); 2018 Dec; 8(4):. PubMed ID: 30518105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Invasive Lactate Monitoring System Using Wearable Chipless Microwave Sensors With Enhanced Sensitivity and Zero Power Consumption.
    Baghelani M; Abbasi Z; Daneshmand M; Light PE
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3175-3182. PubMed ID: 35333709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications.
    García-Guzmán JJ; Sierra-Padilla A; Palacios-Santander JM; Fernández-Alba JJ; Macías CG; Cubillana-Aguilera L
    Biosensors (Basel); 2022 Oct; 12(11):. PubMed ID: 36354428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous lactate monitoring in critically ill patients using microdialysis.
    Daurat A; Dick M; Louart B; Lefrant JY; Muller L; Roger C
    Anaesth Crit Care Pain Med; 2020 Aug; 39(4):513-517. PubMed ID: 32659456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Continuous monitoring of critical patients with a newly developed pulmonary arterial catheter. A cost analysis].
    Boldt J; Heesen M; Müller M; Hempelmann G
    Anaesthesist; 1995 Jun; 44(6):423-8. PubMed ID: 7653794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of lactate in sepsis and COVID-19: Perspective from contracting skeletal muscle metabolism.
    Iepsen UW; Plovsing RR; Tjelle K; Foss NB; Meyhoff CS; Ryrsø CK; Berg RMG; Secher NH
    Exp Physiol; 2022 Jul; 107(7):665-673. PubMed ID: 34058787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancements in wearable technology for monitoring lactate levels using lactate oxidase enzyme and free enzyme as analytical approaches: A review.
    Moradi S; Firoozbakhtian A; Hosseini M; Karaman O; Kalikeri S; Raja GG; Karimi-Maleh H
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127577. PubMed ID: 37866568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of continuous venovenous hemofiltration with dialysis on lactate clearance in critically ill patients.
    Levraut J; Ciebiera JP; Jambou P; Ichai C; Labib Y; Grimaud D
    Crit Care Med; 1997 Jan; 25(1):58-62. PubMed ID: 8989177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A Chinese consensus statement on the clinical application of transesophageal echocardiography for critical care (2019)].
    Yin WH; Wang XT; Liu DW; Kang Y; Chao YG; Zhang LN; Zhang HM; Wu J; Liu LX; Zhu R; He W; ;
    Zhonghua Nei Ke Za Zhi; 2019 Dec; 58(12):869-882. PubMed ID: 31775449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate as a marker of energy failure in critically ill patients: hypothesis.
    Valenza F; Aletti G; Fossali T; Chevallard G; Sacconi F; Irace M; Gattinoni L
    Crit Care; 2005; 9(6):588-93. PubMed ID: 16356243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmented renal clearance in pediatric intensive care: are we undertreating our sickest patients?
    Dhont E; Van Der Heggen T; De Jaeger A; Vande Walle J; De Paepe P; De Cock PA
    Pediatr Nephrol; 2020 Jan; 35(1):25-39. PubMed ID: 30374606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical sensors for continuous monitoring during surgery and intensive care.
    Turner AP
    Acta Anaesthesiol Scand Suppl; 1995; 104():15-9. PubMed ID: 7660746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Feasibility and Utility of Continuous Sleep Monitoring in Critically Ill Patients Using a Portable Electroencephalography Monitor.
    Vacas S; McInrue E; Gropper MA; Maze M; Zak R; Lim E; Leung JM
    Anesth Analg; 2016 Jul; 123(1):206-12. PubMed ID: 27159066
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.