These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 33525591)

  • 1. Genome Editing for β-Hemoglobinopathies: Advances and Challenges.
    Frati G; Miccio A
    J Clin Med; 2021 Jan; 10(3):. PubMed ID: 33525591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies.
    Paschoudi K; Yannaki E; Psatha N
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome editing approaches to β-hemoglobinopathies.
    Brusson M; Miccio A
    Prog Mol Biol Transl Sci; 2021; 182():153-183. PubMed ID: 34175041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advance on genome editing for therapy of β-hemoglobinopathies.
    Liu JW; Hong T; Qin X; Liang YM; Zhang P
    Yi Chuan; 2018 Feb; 40(2):95-103. PubMed ID: 29428902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies.
    Magrin E; Miccio A; Cavazzana M
    Blood; 2019 Oct; 134(15):1203-1213. PubMed ID: 31467062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of lentiviral gene transfer approaches designed to promote fetal hemoglobin production for the treatment of β-hemoglobinopathies.
    Daniel-Moreno A; Lamsfus-Calle A; Wilber A; Chambers CB; Johnston I; Antony JS; Epting T; Handgretinger R; Mezger M
    Blood Cells Mol Dis; 2020 Sep; 84():102456. PubMed ID: 32498026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Small Key for a Heavy Door: Genetic Therapies for the Treatment of Hemoglobinopathies.
    Zittersteijn HA; Harteveld CL; Klaver-Flores S; Lankester AC; Hoeben RC; Staal FJT; Gonçalves MAFV
    Front Genome Ed; 2020; 2():617780. PubMed ID: 34713239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treating hemoglobinopathies using gene-correction approaches: promises and challenges.
    Cottle RN; Lee CM; Bao G
    Hum Genet; 2016 Sep; 135(9):993-1010. PubMed ID: 27314256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition.
    Traxler EA; Yao Y; Wang YD; Woodard KJ; Kurita R; Nakamura Y; Hughes JR; Hardison RC; Blobel GA; Li C; Weiss MJ
    Nat Med; 2016 Sep; 22(9):987-90. PubMed ID: 27525524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical genome editing to treat sickle cell disease-A brief update.
    Zarghamian P; Klermund J; Cathomen T
    Front Med (Lausanne); 2022; 9():1065377. PubMed ID: 36698803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Therapy for Beta-Hemoglobinopathies: Milestones, New Therapies and Challenges.
    Ghiaccio V; Chappell M; Rivella S; Breda L
    Mol Diagn Ther; 2019 Apr; 23(2):173-186. PubMed ID: 30701409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Era for Hemoglobinopathies: More Than One Curative Option.
    Psatha N; Papayanni PG; Yannaki E
    Curr Gene Ther; 2017; 17(5):364-378. PubMed ID: 29357790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hematopoietic-Stem-Cell-Targeted Gene-Addition and Gene-Editing Strategies for β-hemoglobinopathies.
    Drysdale CM; Nassehi T; Gamer J; Yapundich M; Tisdale JF; Uchida N
    Cell Stem Cell; 2021 Feb; 28(2):191-208. PubMed ID: 33545079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Editing the core region in HPFH deletions alters fetal and adult globin expression for treatment of β-hemoglobinopathies.
    Venkatesan V; Christopher AC; Rhiel M; Azhagiri MKK; Babu P; Walavalkar K; Saravanan B; Andrieux G; Rangaraj S; Srinivasan S; Karuppusamy KV; Jacob A; Bagchi A; Pai AA; Nakamura Y; Kurita R; Balasubramanian P; Pai R; Marepally SK; Mohankumar KM; Velayudhan SR; Boerries M; Notani D; Cathomen T; Srivastava A; Thangavel S
    Mol Ther Nucleic Acids; 2023 Jun; 32():671-688. PubMed ID: 37215154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wake-up Sleepy Gene: Reactivating Fetal Globin for β-Hemoglobinopathies.
    Wienert B; Martyn GE; Funnell APW; Quinlan KGR; Crossley M
    Trends Genet; 2018 Dec; 34(12):927-940. PubMed ID: 30287096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemoglobin disorders: lentiviral gene therapy in the starting blocks to enter clinical practice.
    Sii-Felice K; Giorgi M; Leboulch P; Payen E
    Exp Hematol; 2018 Aug; 64():12-32. PubMed ID: 29807062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene therapy for hemoglobinopathies: progress and challenges.
    Dong A; Rivella S; Breda L
    Transl Res; 2013 Apr; 161(4):293-306. PubMed ID: 23337292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-Hemoglobinopathies: The Test Bench for Genome Editing-Based Therapeutic Strategies.
    Barbarani G; Łabedz A; Ronchi AE
    Front Genome Ed; 2020; 2():571239. PubMed ID: 34713219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological and molecular approaches for the treatment of β-hemoglobin disorders.
    Lohani N; Bhargava N; Munshi A; Ramalingam S
    J Cell Physiol; 2018 Jun; 233(6):4563-4577. PubMed ID: 29159826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of Developmental Gamma-Globin Gene Expression: an Approach for Healing Hemoglobinopathies.
    Venkatesan V; Srinivasan S; Babu P; Thangavel S
    Mol Cell Biol; 2020 Dec; 41(1):. PubMed ID: 33077498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.