BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 33525637)

  • 1. Functional Genomics Approaches to Elucidate Vulnerabilities of Intrinsic and Acquired Chemotherapy Resistance.
    Cetin R; Quandt E; Kaulich M
    Cells; 2021 Jan; 10(2):. PubMed ID: 33525637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New tools for old drugs: Functional genetic screens to optimize current chemotherapy.
    Gerhards NM; Rottenberg S
    Drug Resist Updat; 2018 Jan; 36():30-46. PubMed ID: 29499836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal.
    Krill-Burger JM; Dempster JM; Borah AA; Paolella BR; Root DE; Golub TR; Boehm JS; Hahn WC; McFarland JM; Vazquez F; Tsherniak A
    Genome Biol; 2023 Aug; 24(1):192. PubMed ID: 37612728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale drop-out screens to identify cancer cell vulnerabilities in AML.
    Basheer FT; Vassiliou GS
    Curr Opin Genet Dev; 2019 Feb; 54():83-87. PubMed ID: 31063922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR screen in mechanism and target discovery for cancer immunotherapy.
    Liu D; Zhao X; Tang A; Xu X; Liu S; Zha L; Ma W; Zheng J; Shi M
    Biochim Biophys Acta Rev Cancer; 2020 Aug; 1874(1):188378. PubMed ID: 32413572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using functional genomics to overcome therapeutic resistance in hematological malignancies.
    Alvarez-Calderon F; Gregory MA; DeGregori J
    Immunol Res; 2013 Mar; 55(1-3):100-15. PubMed ID: 22941562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Genomics for Cancer Drug Target Discovery.
    Haley B; Roudnicky F
    Cancer Cell; 2020 Jul; 38(1):31-43. PubMed ID: 32442401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide CRISPR-Cas9 Screens Expose Genetic Vulnerabilities and Mechanisms of Temozolomide Sensitivity in Glioblastoma Stem Cells.
    MacLeod G; Bozek DA; Rajakulendran N; Monteiro V; Ahmadi M; Steinhart Z; Kushida MM; Yu H; Coutinho FJ; Cavalli FMG; Restall I; Hao X; Hart T; Luchman HA; Weiss S; Dirks PB; Angers S
    Cell Rep; 2019 Apr; 27(3):971-986.e9. PubMed ID: 30995489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of CRISPR-based screens to identify mechanisms of chemotherapy resistance.
    Alyateem G; Wade HM; Bickert AA; Lipsey CC; Mondal P; Smith MD; Labib RM; Mock BA; Robey RW; Gottesman MM
    Cancer Gene Ther; 2023 Aug; 30(8):1043-1050. PubMed ID: 37029320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?
    Taylor J; Woodcock S
    J Biomol Screen; 2015 Sep; 20(8):1040-51. PubMed ID: 26048892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy.
    Potts MA; McDonald JA; Sutherland KD; Herold MJ
    Eur J Immunol; 2020 Dec; 50(12):1871-1884. PubMed ID: 33202035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pooled Genomic Screens Identify Anti-apoptotic Genes as Targetable Mediators of Chemotherapy Resistance in Ovarian Cancer.
    Stover EH; Baco MB; Cohen O; Li YY; Christie EL; Bagul M; Goodale A; Lee Y; Pantel S; Rees MG; Wei G; Presser AG; Gelbard MK; Zhang W; Zervantonakis IK; Bhola PD; Ryan J; Guerriero JL; Montero J; Liang FJ; Cherniack AD; Piccioni F; Matulonis UA; Bowtell DDL; Sarosiek KA; Letai A; Garraway LA; Johannessen CM; Meyerson M
    Mol Cancer Res; 2019 Nov; 17(11):2281-2293. PubMed ID: 31462500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pooled CRISPR-Based Genetic Screens in Mammalian Cells.
    Chan K; Tong AHY; Brown KR; Mero P; Moffat J
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31545321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New strategies for targeting drug combinations to overcome mutation-driven drug resistance.
    Wang L; Wang H; Song D; Xu M; Liebmen M
    Semin Cancer Biol; 2017 Feb; 42():44-51. PubMed ID: 27840276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-cancer drug resistance: understanding the mechanisms through the use of integrative genomics and functional RNA interference.
    Tan DS; Gerlinger M; Teh BT; Swanton C
    Eur J Cancer; 2010 Aug; 46(12):2166-77. PubMed ID: 20413300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Whole-genome CRISPR Screen Identifies a Role of MSH2 in Cisplatin-mediated Cell Death in Muscle-invasive Bladder Cancer.
    Goodspeed A; Jean A; Costello JC
    Eur Urol; 2019 Feb; 75(2):242-250. PubMed ID: 30414698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9: From Genome Engineering to Cancer Drug Discovery.
    Luo J
    Trends Cancer; 2016 Jun; 2(6):313-324. PubMed ID: 28603775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional-genetic approaches to understanding drug response and resistance.
    Hinterndorfer M; Zuber J
    Curr Opin Genet Dev; 2019 Feb; 54():41-47. PubMed ID: 30951975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening.
    Sun N; Petiwala S; Wang R; Lu C; Hu M; Ghosh S; Hao Y; Miller CP; Chung N
    BMC Genomics; 2019 Mar; 20(1):225. PubMed ID: 30890156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Native CRISPR-Cas-Mediated Genome Editing Enables Dissecting and Sensitizing Clinical Multidrug-Resistant P. aeruginosa.
    Xu Z; Li M; Li Y; Cao H; Miao L; Xu Z; Higuchi Y; Yamasaki S; Nishino K; Woo PCY; Xiang H; Yan A
    Cell Rep; 2019 Nov; 29(6):1707-1717.e3. PubMed ID: 31693906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.