These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 33525668)
81. Nitric oxide and spermine revealed positive defense interplay for the regulation of the chromium toxicity in soybean (Glycine max L.). Basit F; Bhat JA; Guan Y; Jan BL; Tyagi A; Ahmad P Environ Pollut; 2022 Sep; 308():119602. PubMed ID: 35716895 [TBL] [Abstract][Full Text] [Related]
82. Approaches for the amelioration of adverse effects of drought stress on crop plants. Dubey A; Kumar A; Malla MA; Chowdhary K; Singh G; Ravikanth G; Harish ; Sharma S; Saati-Santamaria Z; Menéndez E; Dames JF Front Biosci (Landmark Ed); 2021 Oct; 26(10):928-947. PubMed ID: 34719216 [TBL] [Abstract][Full Text] [Related]
83. Chromium toxicity induced oxidative damage in two rice cultivars and its mitigation through external supplementation of brassinosteroids and spermine. Basit F; Bhat JA; Dong Z; Mou Q; Zhu X; Wang Y; Hu J; Jan BL; Shakoor A; Guan Y; Ahmad P Chemosphere; 2022 Sep; 302():134423. PubMed ID: 35430206 [TBL] [Abstract][Full Text] [Related]
84. Versatile roles of polyamines in improving abiotic stress tolerance of plants. Shao J; Huang K; Batool M; Idrees F; Afzal R; Haroon M; Noushahi HA; Wu W; Hu Q; Lu X; Huang G; Aamer M; Hassan MU; El Sabagh A Front Plant Sci; 2022; 13():1003155. PubMed ID: 36311109 [TBL] [Abstract][Full Text] [Related]
85. Phytohormones Trigger Drought Tolerance in Crop Plants: Outlook and Future Perspectives. Iqbal S; Wang X; Mubeen I; Kamran M; Kanwal I; Díaz GA; Abbas A; Parveen A; Atiq MN; Alshaya H; Zin El-Abedin TK; Fahad S Front Plant Sci; 2021; 12():799318. PubMed ID: 35095971 [TBL] [Abstract][Full Text] [Related]
86. Plants' Physio-Biochemical and Phyto-Hormonal Responses to Alleviate the Adverse Effects of Drought Stress: A Comprehensive Review. Wahab A; Abdi G; Saleem MH; Ali B; Ullah S; Shah W; Mumtaz S; Yasin G; Muresan CC; Marc RA Plants (Basel); 2022 Jun; 11(13):. PubMed ID: 35807572 [TBL] [Abstract][Full Text] [Related]
88. The polyamine spermine rescues Arabidopsis from salinity and drought stresses. Kusano T; Yamaguchi K; Berberich T; Takahashi Y Plant Signal Behav; 2007 Jul; 2(4):251-2. PubMed ID: 19704669 [TBL] [Abstract][Full Text] [Related]
89. Exogenous spermine alleviates the negative effects of combined salinity and paraquat in tomato plants by decreasing stress-induced oxidative damage. Pascual LS; López-Climent MF; Segarra-Medina C; Gómez-Cadenas A; Zandalinas SI Front Plant Sci; 2023; 14():1193207. PubMed ID: 37229124 [TBL] [Abstract][Full Text] [Related]
90. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Raza A; Salehi H; Rahman MA; Zahid Z; Madadkar Haghjou M; Najafi-Kakavand S; Charagh S; Osman HS; Albaqami M; Zhuang Y; Siddique KHM; Zhuang W Front Plant Sci; 2022; 13():961872. PubMed ID: 36176673 [TBL] [Abstract][Full Text] [Related]
91. Polyamines: Their Role in Plant Development and Stress. Blázquez MA Annu Rev Plant Biol; 2024 Jul; 75(1):95-117. PubMed ID: 38382905 [TBL] [Abstract][Full Text] [Related]
92. Abiotic Stresses in Plants: From Molecules to Environment. Bartas M Int J Mol Sci; 2024 Jul; 25(15):. PubMed ID: 39125642 [TBL] [Abstract][Full Text] [Related]
93. Grafting enhances plants drought resistance: Current understanding, mechanisms, and future perspectives. Yang L; Xia L; Zeng Y; Han Q; Zhang S Front Plant Sci; 2022; 13():1015317. PubMed ID: 36275555 [TBL] [Abstract][Full Text] [Related]
94. Plant-nano interactions: A new insight of nano-phytotoxicity. Biswas A; Pal S Plant Physiol Biochem; 2024 May; 210():108646. PubMed ID: 38657549 [TBL] [Abstract][Full Text] [Related]
95. Uncovering the Role of Hormones in Enhancing Antioxidant Defense Systems in Stressed Tomato ( Hernández-Carranza P; Avila-Sosa R; Vera-López O; Navarro-Cruz AR; Ruíz-Espinosa H; Ruiz-López II; Ochoa-Velasco CE Plants (Basel); 2023 Oct; 12(20):. PubMed ID: 37896111 [TBL] [Abstract][Full Text] [Related]
96. Phospholipids: molecules regulating cytoskeletal organization in plant abiotic stress tolerance. Lin F; Qu Y; Zhang Q Plant Signal Behav; 2014; 9(3):e28337. PubMed ID: 24589893 [TBL] [Abstract][Full Text] [Related]
97. Cross-Tolerance and Autoimmunity as Missing Links in Abiotic and Biotic Stress Responses in Plants: A Perspective toward Secondary Metabolic Engineering. Perincherry L; Stępień Ł; Vasudevan SE Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769374 [TBL] [Abstract][Full Text] [Related]
98. Cheap, cost-effective, and quick stress biomarkers for drought stress detection and monitoring in plants. Munné-Bosch S; Villadangos S Trends Plant Sci; 2023 May; 28(5):527-536. PubMed ID: 36764869 [TBL] [Abstract][Full Text] [Related]
99. Polyamines and nitric oxide crosstalk in plant development and abiotic stress tolerance. Tripathi DK; Bhat JA; Ahmad P; Allakhverdiev SI Funct Plant Biol; 2023 Feb; 50(2):i-iv. PubMed ID: 36734992 [TBL] [Abstract][Full Text] [Related]
100. Drought-Stress Induced Physiological and Molecular Changes in Plants 2.0. Hura T; Hura K; Ostrowska A Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675285 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]