BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33525876)

  • 21. Harnessing CRISPR/Cas9 technology in cardiovascular disease.
    Rezaei H; Khadempar S; Farahani N; Hosseingholi EZ; Hayat SMG; Sathyapalan T; Sahebkar AH
    Trends Cardiovasc Med; 2020 Feb; 30(2):93-101. PubMed ID: 30935726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets.
    Zhu H; Zhang L; Tong S; Lee CM; Deshmukh H; Bao G
    Nat Biomed Eng; 2019 Feb; 3(2):126-136. PubMed ID: 30944431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cationic Polymer-Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing.
    Zhang Z; Wan T; Chen Y; Chen Y; Sun H; Cao T; Songyang Z; Tang G; Wu C; Ping Y; Xu FJ; Huang J
    Macromol Rapid Commun; 2019 Mar; 40(5):e1800068. PubMed ID: 29708298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement.
    Hussain B; Lucas SJ; Budak H
    Brief Funct Genomics; 2018 Sep; 17(5):319-328. PubMed ID: 29912293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA Methylation Editing by CRISPR-guided Excision of 5-Methylcytosine.
    Devesa-Guerra I; Morales-Ruiz T; Pérez-Roldán J; Parrilla-Doblas JT; Dorado-León M; García-Ortiz MV; Ariza RR; Roldán-Arjona T
    J Mol Biol; 2020 Mar; 432(7):2204-2216. PubMed ID: 32087201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy.
    Maroufi F; Maali A; Abdollahpour-Alitappeh M; Ahmadi MH; Azad M
    Epigenomics; 2020 Oct; 12(20):1845-1859. PubMed ID: 33185489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas9-mediated demethylation of FOXP3-TSDR toward Treg-characteristic programming of Jurkat T cells.
    Wilk C; Effenberg L; Abberger H; Steenpass L; Hansen W; Zeschnigk M; Kirschning C; Buer J; Kehrmann J
    Cell Immunol; 2022 Jan; 371():104471. PubMed ID: 34954490
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inducible CRISPR-dCas9 Transcriptional Systems for Sensing and Genome Regulation.
    Wu H; Wang F; Jiang JH
    Chembiochem; 2021 Jun; 22(11):1894-1900. PubMed ID: 33433941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Delivery of gene editing therapeutics.
    Kevadiya BD; Islam F; Deol P; Zaman LA; Mosselhy DA; Ashaduzzaman M; Bajwa N; Routhu NK; Singh PA; Dawre S; Vora LK; Nahid S; Mathur D; Nayan MU; Baldi A; Kothari R; Patel TA; Madan J; Gounani Z; Bariwal J; Hettie KS; Gendelman HE
    Nanomedicine; 2023 Nov; 54():102711. PubMed ID: 37813236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Downregulation of SNCA Expression by Targeted Editing of DNA Methylation: A Potential Strategy for Precision Therapy in PD.
    Kantor B; Tagliafierro L; Gu J; Zamora ME; Ilich E; Grenier C; Huang ZY; Murphy S; Chiba-Falek O
    Mol Ther; 2018 Nov; 26(11):2638-2649. PubMed ID: 30266652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Off- and on-target effects of genome editing in mouse embryos.
    Ayabe S; Nakashima K; Yoshiki A
    J Reprod Dev; 2019 Feb; 65(1):1-5. PubMed ID: 30518723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein Inhibitors of CRISPR-Cas9.
    Bondy-Denomy J
    ACS Chem Biol; 2018 Feb; 13(2):417-423. PubMed ID: 29251498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities.
    Li L; Hu S; Chen X
    Biomaterials; 2018 Jul; 171():207-218. PubMed ID: 29704747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenome editing strategies for the functional annotation of CTCF insulators.
    Tarjan DR; Flavahan WA; Bernstein BE
    Nat Commun; 2019 Sep; 10(1):4258. PubMed ID: 31534142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetogenetics with Piezo1 Mechanosensitive Ion Channel for CRISPR Gene Editing.
    Shin W; Jeong S; Lee JU; Jeong SY; Shin J; Kim HH; Cheon J; Lee JH
    Nano Lett; 2022 Sep; 22(18):7415-7422. PubMed ID: 36069378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. dCas9-based gene editing for cleavage-free genomic knock-in of long sequences.
    Wang C; Qu Y; Cheng JKW; Hughes NW; Zhang Q; Wang M; Cong L
    Nat Cell Biol; 2022 Feb; 24(2):268-278. PubMed ID: 35145221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription.
    Zhou XX; Zou X; Chung HK; Gao Y; Liu Y; Qi LS; Lin MZ
    ACS Chem Biol; 2018 Feb; 13(2):443-448. PubMed ID: 28938067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Directed Evolution of CRISPR-Cas9 Base Editors.
    Winter J; Perez-Pinera P
    Trends Biotechnol; 2019 Nov; 37(11):1151-1153. PubMed ID: 31623959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.