These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33525878)

  • 1. Single-Step Direct Growth of Graphene on Cu Ink toward Flexible Hybrid Electronic Applications by Plasma-Enhanced Chemical Vapor Deposition.
    Lu CH; Leu CM; Yeh NC
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6951-6959. PubMed ID: 33525878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer-Compatible Low-Temperature Plasma-Enhanced Chemical Vapor Deposition of Graphene on Electroplated Cu for Flexible Hybrid Electronics.
    Lu CH; Leu CM; Yeh NC
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):41323-41329. PubMed ID: 34470108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications.
    Tran TS; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2018 Nov; 261():41-61. PubMed ID: 30318342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inkjet Printed Parallel Plate Capacitors Using PVP Polymer Dielectric Ink on Flexible Polyimide Substrates.
    Mohapatra A; Sayema Tuli K; Liu KY; Fujiwara T; Robert Hewitt W; Andrasik F; Bashir Morshed I
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4277-4280. PubMed ID: 30441299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Inkjet-Printed Reduced and Functionalized Water-Dispersible Graphene Oxide and Graphene on Polymer Substrate-Application to Printed Temperature Sensors.
    Barmpakos D; Belessi V; Schelwald R; Kaltsas G
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Temperature Direct Growth of Nanocrystalline Multilayer Graphene on Silver with Long-Term Surface Passivation.
    Lu CH; Shang KM; Lee SR; Leu CM; Tai YC; Yeh NC
    ACS Appl Mater Interfaces; 2023 Feb; 15(7):9883-91. PubMed ID: 36752517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-step growth of graphene and graphene-based nanostructures by plasma-enhanced chemical vapor deposition.
    Yeh NC; Hsu CC; Bagley J; Tseng WS
    Nanotechnology; 2019 Apr; 30(16):162001. PubMed ID: 30634178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low temperature critical growth of high quality nitrogen doped graphene on dielectrics by plasma-enhanced chemical vapor deposition.
    Wei D; Peng L; Li M; Mao H; Niu T; Han C; Chen W; Wee AT
    ACS Nano; 2015 Jan; 9(1):164-71. PubMed ID: 25581685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Inkjet Printing of Graphene-Based Elements: Influence of Dispersing Agent on Ink Viscosity.
    Dybowska-Sarapuk L; Kielbasinski K; Arazna A; Futera K; Skalski A; Janczak D; Sloma M; Jakubowska M
    Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30096800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation and growth dynamics of graphene grown by radio frequency plasma-enhanced chemical vapor deposition.
    Li N; Zhen Z; Zhang R; Xu Z; Zheng Z; He L
    Sci Rep; 2021 Mar; 11(1):6007. PubMed ID: 33727653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.
    Wang BY; Yoo TH; Song YW; Lim DS; Oh YJ
    ACS Appl Mater Interfaces; 2013 May; 5(10):4113-9. PubMed ID: 23586602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics.
    Vaseem M; McKerricher G; Shamim A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):177-86. PubMed ID: 26713357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the correlation between sensing performance and surface morphology of inkjet-printed aqueous graphene-based chemiresistors for NO
    Villani F; Schiattarella C; Polichetti T; Capua RD; Loffredo F; Alfano B; Miglietta ML; Massera E; Verdoliva L; Francia GD
    Beilstein J Nanotechnol; 2017; 8():1023-1031. PubMed ID: 28546896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene growth through a recrystallization process in plasma enhanced chemical vapor deposition.
    Bekdüz B; Beckmann Y; Mischke J; Twellmann J; Mertin W; Bacher G
    Nanotechnology; 2018 Nov; 29(45):455603. PubMed ID: 30156560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inkjet Printing on a New Flexible Ceramic Substrate for Internet of Things (IoT) Applications.
    Kirtania SG; Riheen MA; Kim SU; Sekhar K; Wisniewska A; Sekhar PK
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32911708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics.
    He P; Cao J; Ding H; Liu C; Neilson J; Li Z; Kinloch IA; Derby B
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32225-32234. PubMed ID: 31390171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric Dry Hydrogen Plasma Reduction of Inkjet-Printed Flexible Graphene Oxide Electrodes.
    Homola T; Pospíšil J; Krumpolec R; Souček P; Dzik P; Weiter M; Černák M
    ChemSusChem; 2018 Mar; 11(5):941-947. PubMed ID: 29356373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper-Vapor-Assisted Growth and Defect-Healing of Graphene on Copper Surfaces.
    Lee HC; Bong H; Yoo MS; Jo M; Cho K
    Small; 2018 Jul; 14(30):e1801181. PubMed ID: 29966039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switching Vertical to Horizontal Graphene Growth Using Faraday Cage-Assisted PECVD Approach for High-Performance Transparent Heating Device.
    Qi Y; Deng B; Guo X; Chen S; Gao J; Li T; Dou Z; Ci H; Sun J; Chen Z; Wang R; Cui L; Chen X; Chen K; Wang H; Wang S; Gao P; Rummeli MH; Peng H; Zhang Y; Liu Z
    Adv Mater; 2018 Feb; 30(8):. PubMed ID: 29318672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.