These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1000 related articles for article (PubMed ID: 33525993)
41. Unexpected Single-Ligand Occupancy and Negative Cooperativity in the SARS-CoV-2 Main Protease. Albani S; Costanzi E; Hoang GL; Kuzikov M; Frings M; Ansari N; Demitri N; Nguyen TT; Rizzi V; Schulz JB; Bolm C; Zaliani A; Carloni P; Storici P; Rossetti G J Chem Inf Model; 2024 Feb; 64(3):892-904. PubMed ID: 38051605 [TBL] [Abstract][Full Text] [Related]
42. Structure-based screening of novel lichen compounds against SARS Coronavirus main protease (Mpro) as potentials inhibitors of COVID-19. Joshi T; Sharma P; Joshi T; Pundir H; Mathpal S; Chandra S Mol Divers; 2021 Aug; 25(3):1665-1677. PubMed ID: 32602074 [TBL] [Abstract][Full Text] [Related]
43. In Silico Evaluation of Prospective Anti-COVID-19 Drug Candidates as Potential SARS-CoV-2 Main Protease Inhibitors. Ibrahim MAA; Abdelrahman AHM; Allemailem KS; Almatroudi A; Moustafa MF; Hegazy MF Protein J; 2021 Jun; 40(3):296-309. PubMed ID: 33387249 [TBL] [Abstract][Full Text] [Related]
44. Structure-based virtual screening, in silico docking, ADME properties prediction and molecular dynamics studies for the identification of potential inhibitors against SARS-CoV-2 M Mohan A; Rendine N; Mohammed MKS; Jeeva A; Ji HF; Talluri VR Mol Divers; 2022 Jun; 26(3):1645-1661. PubMed ID: 34480682 [TBL] [Abstract][Full Text] [Related]
45. Design and Evaluation of Anti-SARS-Coronavirus Agents Based on Molecular Interactions with the Viral Protease. Akaji K; Konno H Molecules; 2020 Aug; 25(17):. PubMed ID: 32867349 [TBL] [Abstract][Full Text] [Related]
46. Prospecting for Shah S; Chaple D; Arora S; Yende S; Mehta C; Nayak U J Biomol Struct Dyn; 2022 Aug; 40(12):5643-5652. PubMed ID: 33446077 [TBL] [Abstract][Full Text] [Related]
47. Binding mode characterization of 13b in the monomeric and dimeric states of SARS-CoV-2 main protease using molecular dynamics simulations. Kumari A; Mittal L; Srivastava M; Asthana S J Biomol Struct Dyn; 2022; 40(19):9287-9305. PubMed ID: 34029506 [TBL] [Abstract][Full Text] [Related]
48. Statine-based peptidomimetic compounds as inhibitors for SARS-CoV-2 main protease (SARS-CoV‑2 Mpro). Azevedo PHRA; Camargo PG; Constant LEC; Costa SDS; Silva CS; Rosa AS; Souza DDC; Tucci AR; Ferreira VNS; Oliveira TKF; Borba NRR; Rodrigues CR; Albuquerque MG; Dias LRS; Garrett R; Miranda MD; Allonso D; Lima CHDS; Muri EMF Sci Rep; 2024 Apr; 14(1):8991. PubMed ID: 38637583 [TBL] [Abstract][Full Text] [Related]
49. Development of Effective Therapeutic Molecule from Natural Sources against Coronavirus Protease. Fadaka AO; Sibuyi NRS; Martin DR; Klein A; Madiehe A; Meyer M Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502340 [TBL] [Abstract][Full Text] [Related]
51. Analyzing 3D structures of the SARS-CoV-2 main protease reveals structural features of ligand binding for COVID-19 drug discovery. Xu L; Chen R; Liu J; Patterson TA; Hong H Drug Discov Today; 2023 Oct; 28(10):103727. PubMed ID: 37516343 [TBL] [Abstract][Full Text] [Related]
52. Structural and Biochemical Analysis of the Dual Inhibition of MG-132 against SARS-CoV-2 Main Protease (Mpro/3CLpro) and Human Cathepsin-L. Costanzi E; Kuzikov M; Esposito F; Albani S; Demitri N; Giabbai B; Camasta M; Tramontano E; Rossetti G; Zaliani A; Storici P Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769210 [TBL] [Abstract][Full Text] [Related]
53. Molecular interactions and inhibition of the SARS-CoV-2 main protease by a thiadiazolidinone derivative. Andrzejczyk J; Jovic K; Brown LM; Pascetta VG; Varga K; Vashisth H Proteins; 2022 Nov; 90(11):1896-1907. PubMed ID: 35567429 [TBL] [Abstract][Full Text] [Related]
54. Proposition of a new allosteric binding site for potential SARS-CoV-2 3CL protease inhibitors by utilizing molecular dynamics simulations and ensemble docking. Novak J; Rimac H; Kandagalla S; Pathak P; Naumovich V; Grishina M; Potemkin V J Biomol Struct Dyn; 2022; 40(19):9347-9360. PubMed ID: 34018907 [TBL] [Abstract][Full Text] [Related]
55. Computational basis of SARS-CoV 2 main protease inhibition: an insight from molecular dynamics simulation based findings. Avti P; Chauhan A; Shekhar N; Prajapat M; Sarma P; Kaur H; Bhattacharyya A; Kumar S; Prakash A; Sharma S; Medhi B J Biomol Struct Dyn; 2022; 40(19):8894-8904. PubMed ID: 33998950 [TBL] [Abstract][Full Text] [Related]
56. On the search for COVID-19 therapeutics: identification of potential SARS-CoV-2 main protease inhibitors by virtual screening, pharmacophore modeling and molecular dynamics. Hassan A; Arafa RK J Biomol Struct Dyn; 2022 Oct; 40(17):7815-7828. PubMed ID: 33749545 [TBL] [Abstract][Full Text] [Related]
57. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors - an Ghosh R; Chakraborty A; Biswas A; Chowdhuri S J Biomol Struct Dyn; 2021 Aug; 39(12):4362-4374. PubMed ID: 32568613 [TBL] [Abstract][Full Text] [Related]
58. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus. Eleftheriou P; Amanatidou D; Petrou A; Geronikaki A Molecules; 2020 May; 25(11):. PubMed ID: 32485894 [TBL] [Abstract][Full Text] [Related]
59. Allosteric Binding Sites of the SARS-CoV-2 Main Protease: Potential Targets for Broad-Spectrum Anti-Coronavirus Agents. Alzyoud L; Ghattas MA; Atatreh N Drug Des Devel Ther; 2022; 16():2463-2478. PubMed ID: 35941927 [TBL] [Abstract][Full Text] [Related]
60. Inhibitory potential of repurposed drugs against the SARS-CoV-2 main protease: a computational-aided approach. Fadaka AO; Aruleba RT; Sibuyi NRS; Klein A; Madiehe AM; Meyer M J Biomol Struct Dyn; 2022 May; 40(8):3416-3427. PubMed ID: 33200673 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]