These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 33526592)

  • 1. Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells.
    Altamura E; Albanese P; Marotta R; Milano F; Fiore M; Trotta M; Stano P; Mavelli F
    Proc Natl Acad Sci U S A; 2021 Feb; 118(7):. PubMed ID: 33526592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photosynthetic regeneration of ATP using bacterial chromatophores.
    Pace GW; Yang HS; Tannenbaum SR; Archer MC
    Biotechnol Bioeng; 1976 Oct; 18(10):1413-23. PubMed ID: 822897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The functional unit of electrical events and phosphorylation in chromatophores from Rhodopseudomonas sphaeroides.
    Saphon S; Jackson JB; Lerbs V; Witt HT
    Biochim Biophys Acta; 1975 Oct; 408(1):58-66. PubMed ID: 1080674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overall energy conversion efficiency of a photosynthetic vesicle.
    Sener M; Strumpfer J; Singharoy A; Hunter CN; Schulten K
    Elife; 2016 Aug; 5():. PubMed ID: 27564854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extent of the stimulated electrical potential decay under phosphorylating conditions and the H+/ATP ratio in Rhodopseudomonas sphaeroides chromatophores following short flash excitation.
    Jackson JB; Saphon S; Witt HT
    Biochim Biophys Acta; 1975 Oct; 408(1):83-92. PubMed ID: 240445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid-enriched bacterial chromatophores. A system suited to investigate the ubiquinone-mediated interactions of protein complexes in photosynthetic oxidoreduction processes.
    Casadio R; Venturoli G; Di Gioia A; Castellani P; Leonardi L; Melandri BA
    J Biol Chem; 1984 Jul; 259(14):9149-57. PubMed ID: 6378907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connectivity of centermost chromatophores in Rhodobacter sphaeroides bacteria.
    Noble JM; Lubieniecki J; Savitzky BH; Plitzko J; Engelhardt H; Baumeister W; Kourkoutis LF
    Mol Microbiol; 2018 Sep; 109(6):812-825. PubMed ID: 29995992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and possible character of a high-energy intermediate in bacterial photophosphorylation.
    Horio T; Nishikawa K; Yamashita J
    Biochem J; 1966 Jan; 98(1):321-9. PubMed ID: 5938657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of proton flow to ATP synthesis in Rhodobacter capsulatus: F(0)F(1)-ATP synthase is absent from about half of chromatophores.
    Feniouk BA; Cherepanov DA; Junge W; Mulkidjanian AY
    Biochim Biophys Acta; 2001 Nov; 1506(3):189-203. PubMed ID: 11779552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models.
    Hitchcock A; Hunter CN; Sener M
    J Phys Chem B; 2017 Apr; 121(15):3787-3797. PubMed ID: 28301162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependency on environmental redox potential of photophosphorylation in Rhodopseudomonas spheroides.
    Culbert-Runquist JA; Hadsell RM; Loach PA
    Biochemistry; 1973 Aug; 12(18):3508-14. PubMed ID: 4542403
    [No Abstract]   [Full Text] [Related]  

  • 12. Singlet-triplet fusion in Rhodopseudomonas sphaeroides chromatophores. A probe of the organization of the photosynthetic apparatus.
    Monger TG; Parson WW
    Biochim Biophys Acta; 1977 Jun; 460(3):393-407. PubMed ID: 301747
    [No Abstract]   [Full Text] [Related]  

  • 13. Orientation and linear dichroism of the reaction centers from Rhodopseudomonas sphaeroides R-26.
    Abdourakhmanov IA; Ganago AO; Erokhin YE; Solov'ev AA; Chugunov VA
    Biochim Biophys Acta; 1979 Apr; 546(1):183-6. PubMed ID: 312655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of bound ADP in photosynthetic ATP formation by chromatophores from Rhodospirillum rubrum.
    Yammamoto N; Yoshimura S; Higuti T; Nishikawa K; Horio T
    J Biochem; 1972 Dec; 72(6):1397-406. PubMed ID: 4198252
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides.
    Strakhovskaya MG; Lukashev EP; Korvatovskiy BN; Kholina EG; Seifullina NK; Knox PP; Paschenko VZ
    Photosynth Res; 2021 Feb; 147(2):197-209. PubMed ID: 33389445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides.
    Cartron ML; Olsen JD; Sener M; Jackson PJ; Brindley AA; Qian P; Dickman MJ; Leggett GJ; Schulten K; Neil Hunter C
    Biochim Biophys Acta; 2014 Oct; 1837(10):1769-80. PubMed ID: 24530865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Photophosphorylation and binding of phosphates to chromatophores in Rhodospirillum rubrum].
    Lutz HU; Bachofen R
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):387-93. PubMed ID: 4145605
    [No Abstract]   [Full Text] [Related]  

  • 18. Photophosphorylation in presence and absence of added adenosine diphosphate in chromatophores from Rhodospirillum rubrum.
    Horio T; von Stedingk LV; Baltscheffsky H
    Acta Chem Scand; 1966; 20(1):1-10. PubMed ID: 5933524
    [No Abstract]   [Full Text] [Related]  

  • 19. Reconstruction of a kinetic model of the chromatophore vesicles from Rhodobacter sphaeroides.
    Geyer T; Helms V
    Biophys J; 2006 Aug; 91(3):927-37. PubMed ID: 16714340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial photosynthetic cell producing energy for protein synthesis.
    Berhanu S; Ueda T; Kuruma Y
    Nat Commun; 2019 Mar; 10(1):1325. PubMed ID: 30902985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.