BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33526657)

  • 21. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing.
    Shukla S; Kavak E; Gregory M; Imashimizu M; Shutinoski B; Kashlev M; Oberdoerffer P; Sandberg R; Oberdoerffer S
    Nature; 2011 Nov; 479(7371):74-9. PubMed ID: 21964334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Downstream sequence-dependent RNA cleavage and pausing by RNA polymerase I.
    Scull CE; Clarke AM; Lucius AL; Schneider DA
    J Biol Chem; 2020 Jan; 295(5):1288-1299. PubMed ID: 31843971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast.
    Aslanzadeh V; Huang Y; Sanguinetti G; Beggs JD
    Genome Res; 2018 Feb; 28(2):203-213. PubMed ID: 29254943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-transcriptional splicing regulates 3' end cleavage during mammalian erythropoiesis.
    Reimer KA; Mimoso CA; Adelman K; Neugebauer KM
    Mol Cell; 2021 Mar; 81(5):998-1012.e7. PubMed ID: 33440169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. P-TEFb stimulates transcription elongation and pre-mRNA splicing through multilateral mechanisms.
    Lenasi T; Barboric M
    RNA Biol; 2010; 7(2):145-50. PubMed ID: 20305375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pause locally, splice globally.
    Carrillo Oesterreich F; Bieberstein N; Neugebauer KM
    Trends Cell Biol; 2011 Jun; 21(6):328-35. PubMed ID: 21530266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extremely fast and incredibly close: cotranscriptional splicing in budding yeast.
    Wallace EWJ; Beggs JD
    RNA; 2017 May; 23(5):601-610. PubMed ID: 28153948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predictive model of transcriptional elongation control identifies trans regulatory factors from chromatin signatures.
    Akcan TS; Vilov S; Heinig M
    Nucleic Acids Res; 2023 Feb; 51(4):1608-1624. PubMed ID: 36727445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A saga of cancer epigenetics: linking epigenetics to alternative splicing.
    Narayanan SP; Singh S; Shukla S
    Biochem J; 2017 Mar; 474(6):885-896. PubMed ID: 28270561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of Mammalian Native Elongating Transcript sequencing (mNET-seq) high-throughput data.
    PrudĂȘncio P; Rebelo K; Grosso AR; Martinho RG; Carmo-Fonseca M
    Methods; 2020 Jun; 178():89-95. PubMed ID: 31493517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NETSeq reveals heterogeneous nucleotide incorporation by RNA polymerase I.
    Clarke AM; Engel KL; Giles KE; Petit CM; Schneider DA
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):E11633-E11641. PubMed ID: 30482860
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An mRNA Capping Enzyme Targets FACT to the Active Gene To Enhance the Engagement of RNA Polymerase II into Transcriptional Elongation.
    Sen R; Kaja A; Ferdoush J; Lahudkar S; Barman P; Bhaumik SR
    Mol Cell Biol; 2017 Jul; 37(13):. PubMed ID: 28396559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide profiling of RNA polymerase transcription at nucleotide resolution in human cells with native elongating transcript sequencing.
    Mayer A; Churchman LS
    Nat Protoc; 2016 Apr; 11(4):813-33. PubMed ID: 27010758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses.
    Davari K; Lichti J; Gallus C; Greulich F; Uhlenhaut NH; Heinig M; Friedel CC; Glasmacher E
    Cell Rep; 2017 Apr; 19(3):643-654. PubMed ID: 28423325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA polymerase II pausing modulates hematopoietic stem cell emergence in zebrafish.
    Yang Q; Liu X; Zhou T; Cook J; Nguyen K; Bai X
    Blood; 2016 Sep; 128(13):1701-10. PubMed ID: 27520065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adventures in time and space: splicing efficiency and RNA polymerase II elongation rate.
    Moehle EA; Braberg H; Krogan NJ; Guthrie C
    RNA Biol; 2014; 11(4):313-9. PubMed ID: 24717535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo.
    Gerber M; Ma J; Dean K; Eissenberg JC; Shilatifard A
    EMBO J; 2001 Nov; 20(21):6104-14. PubMed ID: 11689450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PTGS2 (prostaglandin endoperoxide synthase-2) expression in term human amnion in vivo involves rapid mRNA turnover, polymerase-II 5'-pausing, and glucocorticoid transrepression.
    Mitchell C; Johnson R; Bisits A; Hirst J; Zakar T
    Endocrinology; 2011 May; 152(5):2113-22. PubMed ID: 21385935
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Super elongation complex contains a TFIIF-related subcomplex.
    Knutson BA; Smith ML; Walker-Kopp N; Xu X
    Transcription; 2016 Aug; 7(4):133-40. PubMed ID: 27223670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation.
    Ip JY; Schmidt D; Pan Q; Ramani AK; Fraser AG; Odom DT; Blencowe BJ
    Genome Res; 2011 Mar; 21(3):390-401. PubMed ID: 21163941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.