These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 33526680)

  • 1. Observing ozone chemistry in an occupied residence.
    Liu Y; Misztal PK; Arata C; Weschler CJ; Nazaroff WW; Goldstein AH
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33526680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indoor ozone/human chemistry and ventilation strategies.
    Salvador CM; Bekö G; Weschler CJ; Morrison G; Le Breton M; Hallquist M; Ekberg L; Langer S
    Indoor Air; 2019 Nov; 29(6):913-925. PubMed ID: 31420890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the off-body squalene ozonolysis on indoor surfaces.
    Zhang M; Gao Y; Xiong J
    Chemosphere; 2022 Mar; 291(Pt 1):132772. PubMed ID: 34742760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the Time-Dependent Concentrations of Primary and Secondary Reaction Products of Ozone with Squalene in a University Classroom.
    Xiong J; He Z; Tang X; Misztal PK; Goldstein AH
    Environ Sci Technol; 2019 Jul; 53(14):8262-8270. PubMed ID: 31260270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous oxidation of squalene film by ozone under various indoor conditions.
    Petrick L; Dubowski Y
    Indoor Air; 2009 Oct; 19(5):381-91. PubMed ID: 19500173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volatile Organic Compound Emissions from Humans Indoors.
    Tang X; Misztal PK; Nazaroff WW; Goldstein AH
    Environ Sci Technol; 2016 Dec; 50(23):12686-12694. PubMed ID: 27934268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ozone-initiated chemistry in an occupied simulated aircraft cabin.
    Weschler CJ; Wisthaler A; Cowlin S; Tamás G; Strøm-Tejsen P; Hodgson AT; Destaillats H; Herrington J; Zhang J; Nazaroff WW
    Environ Sci Technol; 2007 Sep; 41(17):6177-84. PubMed ID: 17937299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical-Chemical Coupling Model for Characterizing the Reaction of Ozone with Squalene in Realistic Indoor Environments.
    Zhang M; Xiong J; Liu Y; Misztal PK; Goldstein AH
    Environ Sci Technol; 2021 Feb; 55(3):1690-1698. PubMed ID: 33464056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Mechanical Ventilation Systems and Human Occupancy on Time-Resolved Source Rates of Volatile Skin Oil Ozonolysis Products in a LEED-Certified Office Building.
    Wu T; Tasoglou A; Huber H; Stevens PS; Boor BE
    Environ Sci Technol; 2021 Dec; 55(24):16477-16488. PubMed ID: 34851619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Products of ozone-initiated chemistry in a simulated aircraft environment.
    Wisthaler A; Tamás G; Wyon DP; Strøm-Tejsen P; Space D; Beauchamp J; Hansel A; Märk TD; Weschler CJ
    Environ Sci Technol; 2005 Jul; 39(13):4823-32. PubMed ID: 16053080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of surface ozone interactions on indoor air chemistry: A modeling study.
    Kruza M; Lewis AC; Morrison GC; Carslaw N
    Indoor Air; 2017 Sep; 27(5):1001-1011. PubMed ID: 28303599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales.
    Shiraiwa M; Carslaw N; Tobias DJ; Waring MS; Rim D; Morrison G; Lakey PSJ; Kruza M; von Domaros M; Cummings BE; Won Y
    Environ Sci Process Impacts; 2019 Aug; 21(8):1240-1254. PubMed ID: 31070639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ozone Chemistry on Greasy Glass Surfaces Affects the Levels of Volatile Organic Compounds in Indoor Environments.
    Deng H; Qiu J; Zhang R; Xu J; Qu Y; Wang J; Liu Y; Gligorovski S
    Environ Sci Technol; 2024 May; 58(19):8393-8403. PubMed ID: 38691770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactions and Products of Squalene and Ozone: A Review.
    Coffaro B; Weisel CP
    Environ Sci Technol; 2022 Jun; 56(12):7396-7411. PubMed ID: 35648815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ozone reaction with clothing and its initiated VOC emissions in an environmental chamber.
    Rai AC; Guo B; Lin CH; Zhang J; Pei J; Chen Q
    Indoor Air; 2014 Feb; 24(1):49-58. PubMed ID: 23841649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yields and Variability of Ozone Reaction Products from Human Skin.
    Morrison GC; Eftekhari A; Majluf F; Krechmer JE
    Environ Sci Technol; 2021 Jan; 55(1):179-187. PubMed ID: 33337871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of organic acids, aldehydes, and ketones in residential environments and their relation to ozone.
    Reiss R; Ryan PB; Tibbetts SJ; Koutrakis P
    J Air Waste Manag Assoc; 1995 Oct; 45(10):811-22. PubMed ID: 7583840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air.
    Wisthaler A; Weschler CJ
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6568-75. PubMed ID: 19706436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical kinetics of multiphase reactions between ozone and human skin lipids: Implications for indoor air quality and health effects.
    Lakey PSJ; Wisthaler A; Berkemeier T; Mikoviny T; Pöschl U; Shiraiwa M
    Indoor Air; 2017 Jul; 27(4):816-828. PubMed ID: 27943451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface chemistry reactions of alpha-terpineol [(R)-2-(4-methyl-3-cyclohexenyl)isopropanol] with ozone and air on a glass and a vinyl tile.
    Ham JE; Wells JR
    Indoor Air; 2008 Oct; 18(5):394-407. PubMed ID: 18647191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.