These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33526682)

  • 1. Identifying hydrophobic protein patches to inform protein interaction interfaces.
    Rego NB; Xi E; Patel AJ
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33526682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Hydration Waters Are Susceptible to Unfavorable Perturbations.
    Rego NB; Xi E; Patel AJ
    J Am Chem Soc; 2019 Feb; 141(5):2080-2086. PubMed ID: 30615413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context.
    Xi E; Venkateshwaran V; Li L; Rego N; Patel AJ; Garde S
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13345-13350. PubMed ID: 29158409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobic regions on protein surfaces: definition based on hydration shell structure and a quick method for their computation.
    Eisenhaber F; Argos P
    Protein Eng; 1996 Dec; 9(12):1121-33. PubMed ID: 9010925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient method to characterize the context-dependent hydrophobicity of proteins.
    Patel AJ; Garde S
    J Phys Chem B; 2014 Feb; 118(6):1564-73. PubMed ID: 24397378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations.
    Godawat R; Jamadagni SN; Garde S
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15119-24. PubMed ID: 19706896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning the relationship between nanoscale chemical patterning and hydrophobicity.
    Rego NB; Ferguson AL; Patel AJ
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2200018119. PubMed ID: 36409904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-spanning water networks and implications for prediction of protein-protein interactions mediated through hydrophobic effects.
    Cui D; Ou S; Patel S
    Proteins; 2014 Dec; 82(12):3312-26. PubMed ID: 25204743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobicity of proteins and interfaces: insights from density fluctuations.
    Jamadagni SN; Godawat R; Garde S
    Annu Rev Chem Biomol Eng; 2011; 2():147-71. PubMed ID: 22432614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple atomic-level hydrophobicity scale reveals protein interfacial structure.
    Kapcha LH; Rossky PJ
    J Mol Biol; 2014 Jan; 426(2):484-98. PubMed ID: 24120937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extended surfaces modulate hydrophobic interactions of neighboring solutes.
    Patel AJ; Varilly P; Jamadagni SN; Acharya H; Garde S; Chandler D
    Proc Natl Acad Sci U S A; 2011 Oct; 108(43):17678-83. PubMed ID: 21987795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying water density fluctuations and compressibility of hydration shells of hydrophobic solutes and proteins.
    Sarupria S; Garde S
    Phys Rev Lett; 2009 Jul; 103(3):037803. PubMed ID: 19659321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology of protein-protein interfaces.
    Larsen TA; Olson AJ; Goodsell DS
    Structure; 1998 Apr; 6(4):421-7. PubMed ID: 9562553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge, hydrophobicity, and confined water: putting past simulations into a simple theoretical framework.
    England JL; Pande VS
    Biochem Cell Biol; 2010 Apr; 88(2):359-69. PubMed ID: 20453936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of vicinal polar and charged groups on hydrophobic hydration.
    Cheng YK; Rossky PJ
    Biopolymers; 1999 Dec; 50(7):742-50. PubMed ID: 10547529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Study of Water-Mediated Interactions between Hydrophilic and Hydrophobic Nanoscale Surfaces.
    Kopel Y; Giovambattista N
    J Phys Chem B; 2019 Dec; 123(50):10814-10824. PubMed ID: 31750656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic hydration shell restores Kauzmann's 1959 explanation of how the hydrophobic factor drives protein folding.
    Baldwin RL
    Proc Natl Acad Sci U S A; 2014 Sep; 111(36):13052-6. PubMed ID: 25157156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Analysis of Protein Surface Hydrophobicity Maps Determined by Sparse Sampling INDUS and Spatial Aggregation Propensity.
    Sinha I; Garde S; Cramer SM
    J Phys Chem B; 2023 Dec; 127(48):10304-10314. PubMed ID: 37993107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol.
    Vagenende V; Yap MG; Trout BL
    Biochemistry; 2009 Nov; 48(46):11084-96. PubMed ID: 19817484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale dewetting transition in protein complex folding.
    Hua L; Huang X; Liu P; Zhou R; Berne BJ
    J Phys Chem B; 2007 Aug; 111(30):9069-77. PubMed ID: 17608515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.