These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 33526911)

  • 1. An evolving view on biogeochemical cycling of iron.
    Kappler A; Bryce C; Mansor M; Lueder U; Byrne JM; Swanner ED
    Nat Rev Microbiol; 2021 Jun; 19(6):360-374. PubMed ID: 33526911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.
    Peng C; Bryce C; Sundman A; Kappler A
    Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30796062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle.
    Melton ED; Swanner ED; Behrens S; Schmidt C; Kappler A
    Nat Rev Microbiol; 2014 Dec; 12(12):797-808. PubMed ID: 25329406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of solar UV radiation and climate change on biogeochemical cycling.
    Zepp RG; Erickson DJ; Paul ND; Sulzberger B
    Photochem Photobiol Sci; 2007 Mar; 6(3):286-300. PubMed ID: 17344963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The integral role of iron in ocean biogeochemistry.
    Tagliabue A; Bowie AR; Boyd PW; Buck KN; Johnson KS; Saito MA
    Nature; 2017 Mar; 543(7643):51-59. PubMed ID: 28252066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of microbial populations mediating biogeochemical cycling in a freshwater lake.
    Arora-Williams K; Olesen SW; Scandella BP; Delwiche K; Spencer SJ; Myers EM; Abraham S; Sooklal A; Preheim SP
    Microbiome; 2018 Sep; 6(1):165. PubMed ID: 30227897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic microbial manganese oxidation and reduction: A critical review.
    Wang X; Xie GJ; Tian N; Dang CC; Cai C; Ding J; Liu BF; Xing DF; Ren NQ; Wang Q
    Sci Total Environ; 2022 May; 822():153513. PubMed ID: 35101498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments.
    Egger M; Rasigraf O; Sapart CJ; Jilbert T; Jetten MS; Röckmann T; van der Veen C; Bândă N; Kartal B; Ettwig KF; Slomp CP
    Environ Sci Technol; 2015 Jan; 49(1):277-83. PubMed ID: 25412274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron isotopic fractionation driven by low-temperature biogeochemical processes.
    Yin NH; Louvat P; Thibault-DE-Chanvalon A; Sebilo M; Amouroux D
    Chemosphere; 2023 Mar; 316():137802. PubMed ID: 36640969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive effects of ozone depletion and climate change on biogeochemical cycles.
    Zepp RG; Callaghan TV; Erickson DJ
    Photochem Photobiol Sci; 2003 Jan; 2(1):51-61. PubMed ID: 12659539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic constraints on the utility of ecological stoichiometry for explaining global biogeochemical patterns.
    Helton AM; Ardón M; Bernhardt ES
    Ecol Lett; 2015 Oct; 18(10):1049-56. PubMed ID: 26259672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of iron reduction on the metabolism of Clostridium acetobutylicum.
    List C; Hosseini Z; Lederballe Meibom K; Hatzimanikatis V; Bernier-Latmani R
    Environ Microbiol; 2019 Oct; 21(10):3548-3563. PubMed ID: 31020759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution-derived hydrogen.
    Toubes-Rodrigo M; Potgieter-Vermaak S; Sen R; Oddsdóttir ES; Elliott D; Cook S
    Microbiologyopen; 2021 Aug; 10(4):e1200. PubMed ID: 34459543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments.
    Rios-Del Toro EE; Valenzuela EI; López-Lozano NE; Cortés-Martínez MG; Sánchez-Rodríguez MA; Calvario-Martínez O; Sánchez-Carrillo S; Cervantes FJ
    Biodegradation; 2018 Oct; 29(5):429-442. PubMed ID: 29948518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone.
    Ding B; Li Z; Qin Y
    Environ Pollut; 2017 Dec; 231(Pt 1):379-386. PubMed ID: 28818813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular underpinnings for microbial extracellular electron transfer during biogeochemical cycling of earth elements.
    Jiang Y; Shi M; Shi L
    Sci China Life Sci; 2019 Oct; 62(10):1275-1286. PubMed ID: 30900163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic evidence for sulfur intermediates as new biogeochemical hubs in a model aquatic microbial ecosystem.
    Vigneron A; Cruaud P; Culley AI; Couture RM; Lovejoy C; Vincent WF
    Microbiome; 2021 Feb; 9(1):46. PubMed ID: 33593438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogeochemical redox processes and their impact on contaminant dynamics.
    Borch T; Kretzschmar R; Kappler A; Cappellen PV; Ginder-Vogel M; Voegelin A; Campbell K
    Environ Sci Technol; 2010 Jan; 44(1):15-23. PubMed ID: 20000681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis).
    Etique M; Jorand FP; Zegeye A; Grégoire B; Despas C; Ruby C
    Environ Sci Technol; 2014 Apr; 48(7):3742-51. PubMed ID: 24605878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.