These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33527069)

  • 1. Analysis of the outbreak of the novel coronavirus COVID-19 dynamic model with control mechanisms.
    Bozkurt F; Yousef A; Abdeljawad T
    Results Phys; 2020 Dec; 19():103586. PubMed ID: 33527069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host.
    Bozkurt F; Yousef A; Baleanu D; Alzabut J
    Chaos Solitons Fractals; 2020 Sep; 138():109931. PubMed ID: 32536758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global behaviour of a predator-prey like model with piecewise constant arguments.
    Kartal S; Gurcan F
    J Biol Dyn; 2015; 9():159-71. PubMed ID: 26040292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability and Hopf bifurcation of an SIR epidemic model with density-dependent transmission and Allee effect.
    Lin X; Liu H; Han X; Wei Y
    Math Biosci Eng; 2023 Jan; 20(2):2750-2775. PubMed ID: 36899556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A delayed eco-epidemiological system with infected prey and predator subject to the weak Allee effect.
    Biswas S; Sasmal SK; Samanta S; Saifuddin M; Khan QJ; Chattopadhyay J
    Math Biosci; 2015 May; 263():198-208. PubMed ID: 25747414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability analysis of a mathematical model in a microcosm with piecewise constant arguments.
    Oztürk I; Bozkurt F; Gurcan F
    Math Biosci; 2012 Dec; 240(2):85-91. PubMed ID: 22954716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of mobility-related infection and vaccination in an epidemiological case.
    Bozkurt F; Baleanu D; Bilgil H
    Comput Methods Biomech Biomed Engin; 2024 Jul; ():1-21. PubMed ID: 38982901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical Analysis of COVID-19 Model Incorporating Environmental Factors.
    Kumari P; Singh S; Singh HP
    Iran J Sci Technol Trans A Sci; 2022; 46(6):1651-1666. PubMed ID: 36466051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SEIR model with unreported infected population and dynamic parameters for the spread of COVID-19.
    Chen Z; Feng L; Lay HA; Furati K; Khaliq A
    Math Comput Simul; 2022 Aug; 198():31-46. PubMed ID: 35233147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex network model for COVID-19: Human behavior, pseudo-periodic solutions and multiple epidemic waves.
    Silva CJ; Cantin G; Cruz C; Fonseca-Pinto R; Passadouro R; Soares Dos Santos E; Torres DFM
    J Math Anal Appl; 2022 Oct; 514(2):125171. PubMed ID: 33776143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of a Fractional-Order COVID-19 Epidemic Model with Lockdown.
    Denu D; Kermausuor S
    Vaccines (Basel); 2022 Oct; 10(11):. PubMed ID: 36366284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the Probability of Reinfection With COVID-19 by the Susceptible-Exposed-Infectious-Removed-Undetectable-Susceptible Model.
    Victor Okhuese A
    JMIR Public Health Surveill; 2020 May; 6(2):e19097. PubMed ID: 32369029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifurcation analysis of a discrete-time compartmental model for hypertensive or diabetic patients exposed to COVID-19.
    Khan MS; Samreen M; Ozair M; Hussain T; Gómez-Aguilar JF
    Eur Phys J Plus; 2021; 136(8):853. PubMed ID: 34426778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fractional order SITR mathematical model for forecasting of transmission of COVID-19 of India with lockdown effect.
    Askar SS; Ghosh D; Santra PK; Elsadany AA; Mahapatra GS
    Results Phys; 2021 May; 24():104067. PubMed ID: 33777667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia.
    Youssef HM; Alghamdi NA; Ezzat MA; El-Bary AA; Shawky AM
    Math Biosci Eng; 2020 Oct; 17(6):7018-7044. PubMed ID: 33378886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical Modelling of the Spatial Distribution of a COVID-19 Outbreak with Vaccination Using Diffusion Equation.
    Kammegne B; Oshinubi K; Babasola O; Peter OJ; Longe OB; Ogunrinde RB; Titiloye EO; Abah RT; Demongeot J
    Pathogens; 2023 Jan; 12(1):. PubMed ID: 36678436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bifurcation analysis of the predator-prey model with the Allee effect in the predator.
    Sen D; Ghorai S; Banerjee M; Morozov A
    J Math Biol; 2021 Dec; 84(1-2):7. PubMed ID: 34970714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fractional-order model of COVID-19 considering the fear effect of the media and social networks on the community.
    Bozkurt F; Yousef A; Abdeljawad T; Kalinli A; Mdallal QA
    Chaos Solitons Fractals; 2021 Nov; 152():111403. PubMed ID: 34522071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical model of Coronavirus Disease (COVID-19) containing asymptomatic and symptomatic classes.
    Ahmed I; Modu GU; Yusuf A; Kumam P; Yusuf I
    Results Phys; 2021 Feb; 21():103776. PubMed ID: 33432294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mittag-Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments.
    Wu A; Liu L; Huang T; Zeng Z
    Neural Netw; 2017 Jan; 85():118-127. PubMed ID: 27814463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.