These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 33527108)

  • 1. Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO
    Xie L; Liang J; Priest C; Wang T; Ding D; Wu G; Li Q
    Chem Commun (Camb); 2021 Feb; 57(15):1839-1854. PubMed ID: 33527108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure- and Electrolyte-Sensitivity in CO
    Arán-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO
    Zhang S; Fan Q; Xia R; Meyer TJ
    Acc Chem Res; 2020 Jan; 53(1):255-264. PubMed ID: 31913013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimetallic Electrocatalysts for CO
    Zhu W; Tackett BM; Chen JG; Jiao F
    Top Curr Chem (Cham); 2018 Oct; 376(6):41. PubMed ID: 30361990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alloy Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct Electrochemical Carbon Dioxide Reduction Reaction (CO
    Kim C; Dionigi F; Beermann V; Wang X; Möller T; Strasser P
    Adv Mater; 2019 Aug; 31(31):e1805617. PubMed ID: 30570788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Customizing catalyst surface/interface structures for electrochemical CO
    Tan X; Zhu H; He C; Zhuang Z; Sun K; Zhang C; Chen C
    Chem Sci; 2024 Mar; 15(12):4292-4312. PubMed ID: 38516078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addressing the Carbonate Issue: Electrocatalysts for Acidic CO
    Wu W; Xu L; Lu Q; Sun J; Xu Z; Song C; Yu JC; Wang Y
    Adv Mater; 2024 May; ():e2312894. PubMed ID: 38722084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The atomic-level regulation of single-atom site catalysts for the electrochemical CO
    Qu Q; Ji S; Chen Y; Wang D; Li Y
    Chem Sci; 2021 Feb; 12(12):4201-4215. PubMed ID: 34168747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroreduction of Carbon Dioxide to Hydrocarbons Using Bimetallic Cu-Pd Catalysts with Different Mixing Patterns.
    Ma S; Sadakiyo M; Heima M; Luo R; Haasch RT; Gold JI; Yamauchi M; Kenis PJ
    J Am Chem Soc; 2017 Jan; 139(1):47-50. PubMed ID: 27958727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimetallic-Derived Catalytic Structures for CO
    Xie Z; Chen JG
    Acc Chem Res; 2023 Sep; 56(18):2447-2458. PubMed ID: 37647142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogenation of Carbon Dioxide to Methanol over Non-Cu-based Heterogeneous Catalysts.
    Sha F; Han Z; Tang S; Wang J; Li C
    ChemSusChem; 2020 Dec; 13(23):6160-6181. PubMed ID: 33146940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MOF-derived transition metal-based catalysts for the electrochemical reduction of CO
    Li J; Zhang B; Dong B; Feng L
    Chem Commun (Camb); 2023 Mar; 59(24):3523-3535. PubMed ID: 36847576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals.
    Porter NS; Wu H; Quan Z; Fang J
    Acc Chem Res; 2013 Aug; 46(8):1867-77. PubMed ID: 23461578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Facet Dependence of CO
    Zheng M; Zhou X; Wang Y; Chen G; Li M
    Molecules; 2023 Apr; 28(7):. PubMed ID: 37049932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction.
    Guo L; Zhou J; Liu F; Meng X; Ma Y; Hao F; Xiong Y; Fan Z
    ACS Nano; 2024 Apr; 18(14):9823-9851. PubMed ID: 38546130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain Relaxation in Metal Alloy Catalysts Steers the Product Selectivity of Electrocatalytic CO
    Hao J; Zhuang Z; Hao J; Cao K; Hu Y; Wu W; Lu S; Wang C; Zhang N; Wang D; Du M; Zhu H
    ACS Nano; 2022 Feb; 16(2):3251-3263. PubMed ID: 35089016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low Dimensional Platinum-Based Bimetallic Nanostructures for Advanced Catalysis.
    Shao Q; Wang P; Zhu T; Huang X
    Acc Chem Res; 2019 Dec; 52(12):3384-3396. PubMed ID: 31397995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ag-Sn Bimetallic Catalyst with a Core-Shell Structure for CO
    Luc W; Collins C; Wang S; Xin H; He K; Kang Y; Jiao F
    J Am Chem Soc; 2017 Feb; 139(5):1885-1893. PubMed ID: 28094994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions.
    Tao FF; Zhang S; Nguyen L; Zhang X
    Chem Soc Rev; 2012 Dec; 41(24):7980-93. PubMed ID: 23023152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.