These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33527205)

  • 81. Calmodulin-induced Conformational Control and Allostery Underlying Neuronal Nitric Oxide Synthase Activation.
    Hanson QM; Carley JR; Gilbreath TJ; Smith BC; Underbakke ES
    J Mol Biol; 2018 Mar; 430(7):935-947. PubMed ID: 29458127
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The formation of a complex between calmodulin and neuronal nitric oxide synthase is determined by ESI-MS.
    Shirran S; Garnaud P; Daff S; McMillan D; Barran P
    J R Soc Interface; 2005 Dec; 2(5):465-76. PubMed ID: 16849206
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Conformational states and fluctuations in endothelial nitric oxide synthase under calmodulin regulation.
    He Y; Haque MM; Stuehr DJ; Lu HP
    Biophys J; 2021 Dec; 120(23):5196-5206. PubMed ID: 34748763
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Electron transfer by neuronal nitric-oxide synthase is regulated by concerted interaction of calmodulin and two intrinsic regulatory elements.
    Roman LJ; Masters BS
    J Biol Chem; 2006 Aug; 281(32):23111-8. PubMed ID: 16782703
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Identification of caveolin-1-interacting sites in neuronal nitric-oxide synthase. Molecular mechanism for inhibition of NO formation.
    Sato Y; Sagami I; Shimizu T
    J Biol Chem; 2004 Mar; 279(10):8827-36. PubMed ID: 14681230
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Regulation of interdomain electron transfer in the NOS output state for NO production.
    Feng C; Tollin G
    Dalton Trans; 2009 Sep; (34):6692-700. PubMed ID: 19690675
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The C termini of constitutive nitric-oxide synthases control electron flow through the flavin and heme domains and affect modulation by calmodulin.
    Roman LJ; Martásek P; Miller RT; Harris DE; de La Garza MA; Shea TM; Kim JJ; Masters BS
    J Biol Chem; 2000 Sep; 275(38):29225-32. PubMed ID: 10871625
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Intraprotein electron transfer in inducible nitric oxide synthase holoenzyme.
    Feng C; Dupont AL; Nahm NJ; Spratt DE; Hazzard JT; Weinberg JB; Guillemette JG; Tollin G; Ghosh DK
    J Biol Inorg Chem; 2009 Jan; 14(1):133-42. PubMed ID: 18830722
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Conformation-dependent hydride transfer in neuronal nitric oxide synthase reductase domain.
    Welland A; Daff S
    FEBS J; 2010 Sep; 277(18):3833-43. PubMed ID: 20718865
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Thermodynamics of oxidation-reduction reactions in mammalian nitric-oxide synthase isoforms.
    Gao YT; Smith SM; Weinberg JB; Montgomery HJ; Newman E; Guillemette JG; Ghosh DK; Roman LJ; Martasek P; Salerno JC
    J Biol Chem; 2004 Apr; 279(18):18759-66. PubMed ID: 14715665
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179.
    Park JH; Lee S; Cho DH; Park YM; Kang DH; Jo I
    Biochem Biophys Res Commun; 2013 Jul; 436(4):601-6. PubMed ID: 23756809
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Solution structure of calmodulin bound to the target peptide of endothelial nitric oxide synthase phosphorylated at Thr495.
    Piazza M; Taiakina V; Guillemette SR; Guillemette JG; Dieckmann T
    Biochemistry; 2014 Mar; 53(8):1241-9. PubMed ID: 24495081
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Determination of the redox potentials and electron transfer properties of the FAD- and FMN-binding domains of the human oxidoreductase NR1.
    Finn RD; Basran J; Roitel O; Wolf CR; Munro AW; Paine MJ; Scrutton NS
    Eur J Biochem; 2003 Mar; 270(6):1164-75. PubMed ID: 12631275
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Rapid kinetic studies of electron transfer in the three isoforms of nitric oxide synthase.
    Miller RT; Martásek P; Omura T; Siler Masters BS
    Biochem Biophys Res Commun; 1999 Nov; 265(1):184-8. PubMed ID: 10548511
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Interaction between caveolin-1 and the reductase domain of endothelial nitric-oxide synthase. Consequences for catalysis.
    Ghosh S; Gachhui R; Crooks C; Wu C; Lisanti MP; Stuehr DJ
    J Biol Chem; 1998 Aug; 273(35):22267-71. PubMed ID: 9712842
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Insights into the mode of flavin mononucleotide binding and catalytic mechanism of bacterial chromate reductases: A molecular dynamics simulation study.
    Pradhan SK; Singh NR; Dehury B; Panda D; Modi MK; Thatoi H
    J Cell Biochem; 2019 Oct; 120(10):16990-17005. PubMed ID: 31131470
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Recruitment of governing elements for electron transfer in the nitric oxide synthase family.
    Jáchymová M; Martásek P; Panda S; Roman LJ; Panda M; Shea TM; Ishimura Y; Kim JJ; Masters BS
    Proc Natl Acad Sci U S A; 2005 Nov; 102(44):15833-8. PubMed ID: 16249336
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Identification of the cysteine nitrosylation sites in human endothelial nitric oxide synthase.
    Tummala M; Ryzhov V; Ravi K; Black SM
    DNA Cell Biol; 2008 Jan; 27(1):25-33. PubMed ID: 17941803
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Analyzing the FMN-heme interdomain docking interactions in neuronal and inducible NOS isoforms by pulsed EPR experiments and conformational distribution modeling.
    Astashkin AV; Gyawali YP; Jiang T; Zhang H; Feng C
    J Biol Inorg Chem; 2024 Sep; 29(6):611-623. PubMed ID: 39136772
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Probing calmodulin-NO synthase interactions via site-specific infrared spectroscopy: an introductory investigation.
    Singh S; Gyawali YP; Jiang T; Bukowski GS; Zheng H; Zhang H; Owopetu R; Thielges MC; Feng C
    J Biol Inorg Chem; 2024 Mar; 29(2):243-250. PubMed ID: 38580821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.