BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 33527256)

  • 1. On Valve Interstitial Cell Signaling: The Link Between Multiscale Mechanics and Mechanobiology.
    Howsmon DP; Sacks MS
    Cardiovasc Eng Technol; 2021 Feb; 12(1):15-27. PubMed ID: 33527256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heart Valve Biomechanics and Underlying Mechanobiology.
    Ayoub S; Ferrari G; Gorman RC; Gorman JH; Schoen FJ; Sacks MS
    Compr Physiol; 2016 Sep; 6(4):1743-1780. PubMed ID: 27783858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying heart valve interstitial cell contractile state using highly tunable poly(ethylene glycol) hydrogels.
    Khang A; Gonzalez Rodriguez A; Schroeder ME; Sansom J; Lejeune E; Anseth KS; Sacks MS
    Acta Biomater; 2019 Sep; 96():354-367. PubMed ID: 31323351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of fibroblast growth factor 1 and 2 on the pathological behavior of valve interstitial cells in a three-dimensional mechanically-conditioned model.
    Lam NT; Tandon I; Balachandran K
    J Biol Eng; 2019; 13():45. PubMed ID: 31149027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valve endothelial-interstitial interactions drive emergent complex calcific lesion formation in vitro.
    Gee TW; Richards JM; Mahmut A; Butcher JT
    Biomaterials; 2021 Feb; 269():120669. PubMed ID: 33482604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming growth factor-beta regulates in vitro heart valve repair by activated valve interstitial cells.
    Liu AC; Gotlieb AI
    Am J Pathol; 2008 Nov; 173(5):1275-85. PubMed ID: 18832581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraluminal valves: development, function and disease.
    Geng X; Cha B; Mahamud MR; Srinivasan RS
    Dis Model Mech; 2017 Nov; 10(11):1273-1287. PubMed ID: 29125824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On modeling the multiscale mechanobiology of soft tissues: Challenges and progress.
    Guo Y; Mofrad MRK; Tepole AB
    Biophys Rev (Melville); 2022 Sep; 3(3):031303. PubMed ID: 38505274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanobiology of the aortic heart valve.
    Butcher JT; Simmons CA; Warnock JN
    J Heart Valve Dis; 2008 Jan; 17(1):62-73. PubMed ID: 18365571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Side-specific endothelial-dependent regulation of aortic valve calcification: interplay of hemodynamics and nitric oxide signaling.
    Richards J; El-Hamamsy I; Chen S; Sarang Z; Sarathchandra P; Yacoub MH; Chester AH; Butcher JT
    Am J Pathol; 2013 May; 182(5):1922-31. PubMed ID: 23499458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of altered mechanobiology on aortic valve pathophysiology.
    Bardon KM; Garelnabi M
    Arch Biochem Biophys; 2020 Sep; 691():108463. PubMed ID: 32590066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valve interstitial cells under impact load, a mechanobiology study.
    Goode D; Dhaliwal R; Mohammadi H
    J Med Eng Technol; 2023 Jan; 47(1):54-66. PubMed ID: 35856893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves.
    Rabkin-Aikawa E; Farber M; Aikawa M; Schoen FJ
    J Heart Valve Dis; 2004 Sep; 13(5):841-7. PubMed ID: 15473488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and function of mechanosensitive ion channels in human valve interstitial cells.
    Al-Shammari H; Latif N; Sarathchandra P; McCormack A; Rog-Zielinska EA; Raja S; Kohl P; Yacoub MH; Peyronnet R; Chester AH
    PLoS One; 2020; 15(10):e0240532. PubMed ID: 33057457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and functional characteristics of heart-valve interstitial cells.
    Chester AH; Taylor PM
    Philos Trans R Soc Lond B Biol Sci; 2007 Aug; 362(1484):1437-43. PubMed ID: 17569642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nfatc1 Promotes Interstitial Cell Formation During Cardiac Valve Development in Zebrafish.
    Gunawan F; Gentile A; Gauvrit S; Stainier DYR; Bensimon-Brito A
    Circ Res; 2020 Apr; 126(8):968-984. PubMed ID: 32070236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges in developing a reseeded, tissue-engineered aortic valve prosthesis.
    Hof A; Raschke S; Baier K; Nehrenheim L; Selig JI; Schomaker M; Lichtenberg A; Meyer H; Akhyari P
    Eur J Cardiothorac Surg; 2016 Sep; 50(3):446-55. PubMed ID: 27084195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac valve cells and their microenvironment--insights from in vitro studies.
    Wang H; Leinwand LA; Anseth KS
    Nat Rev Cardiol; 2014 Dec; 11(12):715-27. PubMed ID: 25311230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial expression of components of a calcitonin receptor-like receptor (CRL) signalling system (CRL, calcitonin gene-related peptide, adrenomedullin, adrenomedullin-2/intermedin) in mouse and human heart valves.
    Pfeil U; Bharathala S; Murtaza G; Mermer P; Papadakis T; Boening A; Kummer W
    Cell Tissue Res; 2016 Dec; 366(3):587-599. PubMed ID: 27553639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface chemistry regulates valvular interstitial cell differentiation in vitro.
    Rush MN; Coombs KE; Hedberg-Dirk EL
    Acta Biomater; 2015 Dec; 28():76-85. PubMed ID: 26428193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.