These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 33527256)

  • 21. Which Biological Properties of Heart Valves Are Relevant to Tissue Engineering?
    Chester AH; Grande-Allen KJ
    Front Cardiovasc Med; 2020; 7():63. PubMed ID: 32373630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of a cyclic pressure bioreactor for the ex vivo study of aortic heart valves.
    Schipke KJ; To SD; Warnock JN
    J Vis Exp; 2011 Aug; (54):. PubMed ID: 21876532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tumor necrosis factor-α promotes and exacerbates calcification in heart valve myofibroblast populations.
    Gonzalez Rodriguez A; Schroeder ME; Grim JC; Walker CJ; Speckl KF; Weiss RM; Anseth KS
    FASEB J; 2021 Mar; 35(3):e21382. PubMed ID: 33554387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemodynamics driven cardiac valve morphogenesis.
    Steed E; Boselli F; Vermot J
    Biochim Biophys Acta; 2016 Jul; 1863(7 Pt B):1760-6. PubMed ID: 26608609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical strain induces a pro-fibrotic phenotype in human mitral valvular interstitial cells through RhoC/ROCK/MRTF-A and Erk1/2 signaling pathways.
    Blomme B; Deroanne C; Hulin A; Lambert C; Defraigne JO; Nusgens B; Radermecker M; Colige A
    J Mol Cell Cardiol; 2019 Oct; 135():149-159. PubMed ID: 31442470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the Functional Role of Valve Interstitial Cell Stress Fibers: A Continuum Modeling Approach.
    Sakamoto Y; Buchanan RM; Sanchez-Adams J; Guilak F; Sacks MS
    J Biomech Eng; 2017 Feb; 139(2):0210071-02100713. PubMed ID: 28024085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Valve interstitial cell tensional homeostasis directs calcification and extracellular matrix remodeling processes via RhoA signaling.
    Farrar EJ; Pramil V; Richards JM; Mosher CZ; Butcher JT
    Biomaterials; 2016 Oct; 105():25-37. PubMed ID: 27497058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human iPSC-derived mesenchymal stem cells encapsulated in PEGDA hydrogels mature into valve interstitial-like cells.
    Nachlas ALY; Li S; Jha R; Singh M; Xu C; Davis ME
    Acta Biomater; 2018 Apr; 71():235-246. PubMed ID: 29505894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A computational multi-scale approach to investigate mechanically-induced changes in tricuspid valve anterior leaflet microstructure.
    Thomas VS; Lai V; Amini R
    Acta Biomater; 2019 Aug; 94():524-535. PubMed ID: 31229629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrostatic mechanical stress regulates growth and maturation of the atrioventricular valve.
    Bassen D; Wang M; Pham D; Sun S; Rao R; Singh R; Butcher J
    Development; 2021 Jul; 148(13):. PubMed ID: 34086041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical considerations for polymeric heart valve development: Biomechanics, materials, design and manufacturing.
    Li RL; Russ J; Paschalides C; Ferrari G; Waisman H; Kysar JW; Kalfa D
    Biomaterials; 2019 Dec; 225():119493. PubMed ID: 31569017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of cell biology and leaflet remodeling in the progression of heart valve disease.
    Xu S; Grande-Allen KJ
    Methodist Debakey Cardiovasc J; 2010; 6(1):2-7. PubMed ID: 20360651
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment.
    Mabry KM; Lawrence RL; Anseth KS
    Biomaterials; 2015 May; 49():47-56. PubMed ID: 25725554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology.
    Engelmayr GC; Soletti L; Vigmostad SC; Budilarto SG; Federspiel WJ; Chandran KB; Vorp DA; Sacks MS
    Ann Biomed Eng; 2008 May; 36(5):700-12. PubMed ID: 18253834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances towards understanding heart valve response to injury.
    Durbin AD; Gotlieb AI
    Cardiovasc Pathol; 2002; 11(2):69-77. PubMed ID: 11934597
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active tissue stiffness modulation controls valve interstitial cell phenotype and osteogenic potential in 3D culture.
    Duan B; Yin Z; Hockaday Kang L; Magin RL; Butcher JT
    Acta Biomater; 2016 May; 36():42-54. PubMed ID: 26947381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mechanobiology of zebrafish cardiac valve leaflet formation.
    Paolini A; Abdelilah-Seyfried S
    Curr Opin Cell Biol; 2018 Dec; 55():52-58. PubMed ID: 30007126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology.
    Liu AC; Joag VR; Gotlieb AI
    Am J Pathol; 2007 Nov; 171(5):1407-18. PubMed ID: 17823281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanobiology of myofibroblast adhesion in fibrotic cardiac disease.
    Schroer AK; Merryman WD
    J Cell Sci; 2015 May; 128(10):1865-75. PubMed ID: 25918124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanical Remodeling of Aortic Valve Interstitial Cells During Calcified Lesion Formation In Vitro.
    Shih JY; Gee T; Scuderi G; Butcher J
    Ann Biomed Eng; 2024 May; 52(5):1270-1279. PubMed ID: 38374519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.