BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33527399)

  • 1. Copy number variations and young duplicate genes have high methylation levels in sticklebacks.
    Huang KM; Chain FJJ
    Evolution; 2021 Mar; 75(3):706-718. PubMed ID: 33527399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive copy-number variation of young genes across stickleback populations.
    Chain FJ; Feulner PG; Panchal M; Eizaguirre C; Samonte IE; Kalbe M; Lenz TL; Stoll M; Bornberg-Bauer E; Milinski M; Reusch TB
    PLoS Genet; 2014 Dec; 10(12):e1004830. PubMed ID: 25474574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Genotype-Expression Relationships Reveal Both Copy Number and Single Nucleotide Differentiation Contribute to Differential Gene Expression between Stickleback Ecotypes.
    Huang Y; Feulner PGD; Eizaguirre C; Lenz TL; Bornberg-Bauer E; Milinski M; Reusch TBH; Chain FJJ
    Genome Biol Evol; 2019 Aug; 11(8):2344-2359. PubMed ID: 31298693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel selection on gene copy number variations through evolution of three-spined stickleback genomes.
    Hirase S; Ozaki H; Iwasaki W
    BMC Genomics; 2014 Aug; 15(1):735. PubMed ID: 25168270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA methylation signatures of duplicate gene evolution in angiosperms.
    Kenchanmane Raju SK; Ledford M; Niederhuth CE
    Plant Physiol; 2023 Aug; 192(4):2883-2901. PubMed ID: 37061825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes.
    Venkatachalam AB; Parmar MB; Wright JM
    Mol Genet Genomics; 2017 Aug; 292(4):699-727. PubMed ID: 28389698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA methylation and evolution of duplicate genes.
    Keller TE; Yi SV
    Proc Natl Acad Sci U S A; 2014 Apr; 111(16):5932-7. PubMed ID: 24711408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The DNA Methylation Landscape of Stickleback Reveals Patterns of Sex Chromosome Evolution and Effects of Environmental Salinity.
    Metzger DCH; Schulte PM
    Genome Biol Evol; 2018 Mar; 10(3):775-785. PubMed ID: 29420714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive lineage-specific gene duplication and evolution of the spiggin multi-gene family in stickleback.
    Kawahara R; Nishida M
    BMC Evol Biol; 2007 Nov; 7():209. PubMed ID: 17980047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Duplication in the Honeybee: Patterns of DNA Methylation, Gene Expression, and Genomic Environment.
    Dyson CJ; Goodisman MAD
    Mol Biol Evol; 2020 Aug; 37(8):2322-2331. PubMed ID: 32243528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sub-functionalization of duplicated genes in the evolution of nine-spined stickleback hatching enzyme.
    Kawaguchi M; Takahashi H; Takehana Y; Naruse K; Nishida M; Yasumasu S
    J Exp Zool B Mol Dev Evol; 2013 May; 320(3):140-50. PubMed ID: 23554322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide DNA Methylation Profiling Reveals Epigenetic Adaptation of Stickleback to Marine and Freshwater Conditions.
    Artemov AV; Mugue NS; Rastorguev SM; Zhenilo S; Mazur AM; Tsygankova SV; Boulygina ES; Kaplun D; Nedoluzhko AV; Medvedeva YA; Prokhortchouk EB
    Mol Biol Evol; 2017 Sep; 34(9):2203-2213. PubMed ID: 28873953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neofunctionalization of young duplicate genes in Drosophila.
    Assis R; Bachtrog D
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17409-14. PubMed ID: 24101476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive evolution of young gene duplicates in mammals.
    Han MV; Demuth JP; McGrath CL; Casola C; Hahn MW
    Genome Res; 2009 May; 19(5):859-67. PubMed ID: 19411603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymorphic duplicate genes and persistent non-coding sequences reveal heterogeneous patterns of mitochondrial DNA loss in salamanders.
    Chong RA; Mueller RL
    BMC Genomics; 2017 Dec; 18(1):992. PubMed ID: 29281973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural Selection Drives Rapid Functional Evolution of Young Drosophila Duplicate Genes.
    Jiang X; Assis R
    Mol Biol Evol; 2017 Dec; 34(12):3089-3098. PubMed ID: 28961791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dating and functional characterization of duplicated genes in the apple (Malus domestica Borkh.) by analyzing EST data.
    Sanzol J
    BMC Plant Biol; 2010 May; 10():87. PubMed ID: 20470375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention of duplicated genes in evolution.
    Kuzmin E; Taylor JS; Boone C
    Trends Genet; 2022 Jan; 38(1):59-72. PubMed ID: 34294428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genome-wide survey of copy number variations reveals an asymmetric evolution of duplicated genes in rice.
    Zhao F; Wang Y; Zheng J; Wen Y; Qu M; Kang S; Wu S; Deng X; Hong K; Li S; Qin X; Wu Z; Wang X; Ai C; Li A; Zeng L; Hu J; Zeng D; Shang L; Wang Q; Qian Q; Ruan J; Xiong G
    BMC Biol; 2020 Jun; 18(1):73. PubMed ID: 32591023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Duplicate gene evolution and expression in the wake of vertebrate allopolyploidization.
    Chain FJ; Ilieva D; Evans BJ
    BMC Evol Biol; 2008 Feb; 8():43. PubMed ID: 18261230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.