These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 33527640)

  • 1. Free-Standing Covalent Organic Framework Membrane for High-Efficiency Salinity Gradient Energy Conversion.
    Hou S; Ji W; Chen J; Teng Y; Wen L; Jiang L
    Angew Chem Int Ed Engl; 2021 Apr; 60(18):9925-9930. PubMed ID: 33527640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes.
    Cao L; Chen IC; Chen C; Shinde DB; Liu X; Li Z; Zhou Z; Zhang Y; Han Y; Lai Z
    J Am Chem Soc; 2022 Jul; 144(27):12400-12409. PubMed ID: 35762206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion.
    Zhao Y; Wang J; Kong XY; Xin W; Zhou T; Qian Y; Yang L; Pang J; Jiang L; Wen L
    Natl Sci Rev; 2020 Aug; 7(8):1349-1359. PubMed ID: 34692163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH
    Yao L; Li Q; Pan S; Cheng J; Liu X
    Front Bioeng Biotechnol; 2022; 10():901507. PubMed ID: 35528210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting.
    Bang KR; Kwon C; Lee H; Kim S; Cho ES
    ACS Nano; 2023 Jun; 17(11):10000-10009. PubMed ID: 37196224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Super-Assembly of Intertwined Nanofibers toward Hybrid Nanochannels for Synergistic Salinity Gradient Power Conversion.
    Awati A; Zhou S; Shi T; Zeng J; Yang R; He Y; Zhang X; Zeng H; Zhu D; Cao T; Xie L; Liu M; Kong B
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27075-27088. PubMed ID: 37235387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRPM4-Inspired Polymeric Nanochannels with Preferential Cation Transport for High-Efficiency Salinity-Gradient Energy Conversion.
    Huang D; Zou K; Wu Y; Li K; Zhang Z; Liu T; Chen W; Yan Z; Zhou S; Kong XY; Jiang L; Wen L
    J Am Chem Soc; 2024 Jun; ():. PubMed ID: 38842082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance ionic diode membrane for salinity gradient power generation.
    Gao J; Guo W; Feng D; Wang H; Zhao D; Jiang L
    J Am Chem Soc; 2014 Sep; 136(35):12265-72. PubMed ID: 25137214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic Two-Dimensional Vermiculite Nanofluidic Membranes for Stable Salinity-Gradient Energy Conversion.
    Liu Y; Ding X; Chen L; Tian W; Xu X; Zhang K
    Inorg Chem; 2023 Apr; 62(14):5400-5407. PubMed ID: 36994870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial Super-Assembly of Vacancy Engineered Ultrathin-Nanosheets Toward Nanochannels for Smart Ion Transport and Salinity Gradient Power Conversion.
    Awati A; Yang R; Shi T; Zhou S; Zhang X; Zeng H; Lv Y; Liang K; Xie L; Zhu D; Liu M; Kong B
    Angew Chem Int Ed Engl; 2024 Aug; 63(32):e202407491. PubMed ID: 38735853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial Super-Assembly of T-Mode Janus Porous Heterochannels from Layered Graphene and Aluminum Oxide Array for Smart Oriented Ion Transportation.
    Zhang L; Zhou S; Xie L; Wen L; Tang J; Liang K; Kong X; Zeng J; Zhang R; Liu J; Qiu B; Jiang L; Kong B
    Small; 2021 Apr; 17(13):e2100141. PubMed ID: 33690995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essence of the Enhanced Osmotic Energy Conversion in a Covalent Organic Framework Monolayer.
    Huang Z; Fang M; Tu B; Yang J; Yan Z; Alemayehu HG; Tang Z; Li L
    ACS Nano; 2022 Oct; 16(10):17149-17156. PubMed ID: 36165566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion.
    Fu W; Zhang J; Zhang Q; Ahmad M; Sun Z; Li Z; Zhu Y; Zhou Y; Wang S
    Int J Biol Macromol; 2024 Feb; 257(Pt 1):128546. PubMed ID: 38061510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Ionic Selectivity and Osmotic Energy by Using an Ultrathin Zr-MOF-Based Heterogeneous Membrane with Trilayered Continuous Porous Structure.
    Yang ZJ; Yeh LH; Peng YH; Chuang YP; Wu KC
    Angew Chem Int Ed Engl; 2024 Aug; 63(35):e202408375. PubMed ID: 38847272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unipolar Ionic Diode Nanofluidic Membranes Enabled by Stepped Mesochannels for Enhanced Salinity Gradient Energy Harvesting.
    Yang Y; Zhou S; Lv Z; Hung CT; Zhao Z; Zhao T; Chao D; Kong B; Zhao D
    J Am Chem Soc; 2024 Jul; 146(28):19580-19589. PubMed ID: 38977375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-responsive and ultrapermeable two-dimensional metal-organic framework membrane for efficient ionic energy harvesting.
    Wang J; Song Z; He M; Qian Y; Wang D; Cui Z; Feng Y; Li S; Huang B; Kong X; Han J; Wang L
    Nat Commun; 2024 Mar; 15(1):2125. PubMed ID: 38459037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional Membranes with Highly Charged Nanochannels for Osmotic Energy Conversion.
    Qian Y; Liu D; Yang G; Chen J; Ma Y; Wang L; Wang X; Lei W
    ChemSusChem; 2022 Oct; 15(19):e202200933. PubMed ID: 35853838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Ultrastable MXene/PEDOT:PSS Layered Membrane for Effective Salinity Gradient Energy Harvesting from Organic Solvents.
    Chen Y; Fang M; Ding S; Liu Y; Wang X; Guo Y; Sun X; Zhu Y
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35543622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic Crosslinking-Induced Nanochannels: Nanophase Separation for Ion Transport Promotion.
    Chen W; Dong T; Xiang Y; Qian Y; Zhao X; Xin W; Kong XY; Jiang L; Wen L
    Adv Mater; 2022 Jan; 34(3):e2108410. PubMed ID: 34750892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.