These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 33527829)
1. Operation Mechanism in Hybrid Mg-Li Batteries with TiNb Maletti S; Janson O; Herzog-Arbeitman A; Gonzalez Martinez IG; Buckan R; Fischer J; Senyshyn A; Missyul A; Etter M; Mikhailova D ACS Appl Mater Interfaces; 2021 Feb; 13(5):6309-6321. PubMed ID: 33527829 [TBL] [Abstract][Full Text] [Related]
2. VO Pei C; Xiong F; Sheng J; Yin Y; Tan S; Wang D; Han C; An Q; Mai L ACS Appl Mater Interfaces; 2017 May; 9(20):17060-17066. PubMed ID: 28467043 [TBL] [Abstract][Full Text] [Related]
3. NonAqueous, Metal-Free, and Hybrid Electrolyte Li-Ion O Deng H; Qiao Y; Wu S; Qiu F; Zhang N; He P; Zhou H ACS Appl Mater Interfaces; 2019 Feb; 11(5):4908-4914. PubMed ID: 30387593 [TBL] [Abstract][Full Text] [Related]
4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
5. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage. Yoo HD; Liang Y; Li Y; Yao Y ACS Appl Mater Interfaces; 2015 Apr; 7(12):7001-7. PubMed ID: 25799037 [TBL] [Abstract][Full Text] [Related]
6. Stable Cycling of High-Voltage Lithium-Metal Batteries Enabled by High-Concentration FEC-Based Electrolyte. Wang W; Zhang J; Yang Q; Wang S; Wang W; Li B ACS Appl Mater Interfaces; 2020 May; 12(20):22901-22909. PubMed ID: 32348668 [TBL] [Abstract][Full Text] [Related]
7. Synchronous Manipulation of Ion and Electron Transfer in Wadsley-Roth Phase Ti-Nb Oxides for Fast-Charging Lithium-Ion Batteries. Yang Y; Huang J; Cao Z; Lv Z; Wu D; Wen Z; Meng W; Zeng J; Li CC; Zhao J Adv Sci (Weinh); 2022 Feb; 9(6):e2104530. PubMed ID: 34962107 [TBL] [Abstract][Full Text] [Related]
8. Establish TiNb Gong S; Wang Y; Li M; Wen Y; Xu B; Wang H; Qiu J; Li B Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614672 [TBL] [Abstract][Full Text] [Related]
9. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte. Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172 [TBL] [Abstract][Full Text] [Related]
10. Unravelling the Interface Layer Formation and Gas Evolution/Suppression on a TiNb Wu X; Lou S; Cheng X; Lin C; Gao J; Ma Y; Zuo P; Du C; Gao Y; Yin G ACS Appl Mater Interfaces; 2018 Aug; 10(32):27056-27062. PubMed ID: 30035529 [TBL] [Abstract][Full Text] [Related]
11. Engineering a TiNb Zhou X; Zeng P; Yu H; Guo C; Miao C; Guo X; Chen M; Wang X ACS Appl Mater Interfaces; 2022 Jan; 14(1):1157-1168. PubMed ID: 34962368 [TBL] [Abstract][Full Text] [Related]
12. Rechargeable Mg-M (M = Li, Na and K) dual-metal-ion batteries based on a Berlin green cathode and a metallic Mg anode. Zhang Y; Shen J; Li X; Chen Z; Cao SA; Li T; Xu F Phys Chem Chem Phys; 2019 Sep; 21(36):20269-20275. PubMed ID: 31490519 [TBL] [Abstract][Full Text] [Related]
13. Synergy of Weakly Solvated Electrolyte and LiF-Reinforced Interphase Enables Long-Term Operation of Li-Metal Batteries at Low Temperatures. Tao C; Zheng T; Jia P; Gong W; Yila G; Wang L; Liu T ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38683967 [TBL] [Abstract][Full Text] [Related]
14. Nature of the Cathode-Electrolyte Interface in Highly Concentrated Electrolytes Used in Graphite Dual-Ion Batteries. Kotronia A; Asfaw HD; Tai CW; Hahlin M; Brandell D; Edström K ACS Appl Mater Interfaces; 2021 Jan; 13(3):3867-3880. PubMed ID: 33434003 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Sodium-Ion Storage Behaviors in TiNb Huang Y; Li X; Luo J; Wang K; Zhang Q; Qiu Y; Sun S; Liu S; Han J; Huang Y ACS Appl Mater Interfaces; 2017 Mar; 9(10):8696-8703. PubMed ID: 28218513 [TBL] [Abstract][Full Text] [Related]
17. High-Capacity Mg-Organic Batteries Based on Nanostructured Rhodizonate Salts Activated by Mg-Li Dual-Salt Electrolyte. Tian J; Cao D; Zhou X; Hu J; Huang M; Li C ACS Nano; 2018 Apr; 12(4):3424-3435. PubMed ID: 29617114 [TBL] [Abstract][Full Text] [Related]
18. Commercially Viable Hybrid Li-Ion/Metal Batteries with High Energy Density Realized by Symbiotic Anode and Prelithiated Cathode. Lin K; Xu X; Qin X; Liu M; Zhao L; Yang Z; Liu Q; Ye Y; Chen G; Kang F; Li B Nanomicro Lett; 2022 Jul; 14(1):149. PubMed ID: 35869171 [TBL] [Abstract][Full Text] [Related]
19. Promoting Rechargeable Batteries Operated at Low Temperature. Dong X; Wang YG; Xia Y Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652 [TBL] [Abstract][Full Text] [Related]
20. SBA-15 confined synthesis of TiNb2O7 nanoparticles for lithium-ion batteries. Fei L; Xu Y; Wu X; Li Y; Xie P; Deng S; Smirnov S; Luo H Nanoscale; 2013 Nov; 5(22):11102-7. PubMed ID: 24071825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]