These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33527832)

  • 1. Whole Cell Active Inhibitors of Mycobacterial Lipoamide Dehydrogenase Afford Selectivity over the Human Enzyme through Tight Binding Interactions.
    Ginn J; Jiang X; Sun S; Michino M; Huggins DJ; Mbambo Z; Jansen R; Rhee KY; Arango N; Lima CD; Liverton N; Imaeda T; Okamoto R; Kuroita T; Aso K; Stamford A; Foley M; Meinke PT; Nathan C; Bryk R
    ACS Infect Dis; 2021 Feb; 7(2):435-444. PubMed ID: 33527832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipoamide channel-binding sulfonamides selectively inhibit mycobacterial lipoamide dehydrogenase.
    Bryk R; Arango N; Maksymiuk C; Balakrishnan A; Wu YT; Wong CH; Masquelin T; Hipskind P; Lima CD; Nathan C
    Biochemistry; 2013 Dec; 52(51):9375-84. PubMed ID: 24251446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indazole to 2-cyanoindole scaffold progression for mycobacterial lipoamide dehydrogenase inhibitors achieves extended target residence time and improved antibacterial activity.
    Bryk R; Sun S; Ginn J; Kochanczyk T; Arango N; Jiang X; Huggins DJ; Bean J; Michino M; Baxt L; Liverton N; Meinke PT
    Angew Chem Int Ed Engl; 2024 Jul; ():e202407276. PubMed ID: 38997232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triazaspirodimethoxybenzoyls as selective inhibitors of mycobacterial lipoamide dehydrogenase .
    Bryk R; Arango N; Venugopal A; Warren JD; Park YH; Patel MS; Lima CD; Nathan C
    Biochemistry; 2010 Mar; 49(8):1616-27. PubMed ID: 20078138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signalling inhibitors against Mycobacterium tuberculosis--early days of a new therapeutic concept in tuberculosis.
    Hegymegi-Barakonyi B; Székely R; Varga Z; Kiss R; Borbély G; Németh G; Bánhegyi P; Pató J; Greff Z; Horváth Z; Mészáros G; Marosfalvi J; Erōs D; Szántai-Kis C; Breza N; Garavaglia S; Perozzi S; Rizzi M; Hafenbradl D; Ko M; Av-Gay Y; Klebl BM; Orfi L; Kéri G
    Curr Med Chem; 2008; 15(26):2760-70. PubMed ID: 18991635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure and functional analysis of lipoamide dehydrogenase from Mycobacterium tuberculosis.
    Rajashankar KR; Bryk R; Kniewel R; Buglino JA; Nathan CF; Lima CD
    J Biol Chem; 2005 Oct; 280(40):33977-83. PubMed ID: 16093239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipoamide dehydrogenase mediates retention of coronin-1 on BCG vacuoles, leading to arrest in phagosome maturation.
    Deghmane AE; Soualhine H; Bach H; Sendide K; Itoh S; Tam A; Noubir S; Talal A; Lo R; Toyoshima S; Av-Gay Y; Hmama Z
    J Cell Sci; 2007 Aug; 120(Pt 16):2796-806. PubMed ID: 17652161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycobacterium tuberculosis lipoamide dehydrogenase is encoded by Rv0462 and not by the lpdA or lpdB genes.
    Argyrou A; Blanchard JS
    Biochemistry; 2001 Sep; 40(38):11353-63. PubMed ID: 11560483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes.
    Venugopal A; Bryk R; Shi S; Rhee K; Rath P; Schnappinger D; Ehrt S; Nathan C
    Cell Host Microbe; 2011 Jan; 9(1):21-31. PubMed ID: 21238944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The lipoamide dehydrogenase from Mycobacterium tuberculosis permits the direct observation of flavin intermediates in catalysis.
    Argyrou A; Blanchard JS; Palfey BA
    Biochemistry; 2002 Dec; 41(49):14580-90. PubMed ID: 12463758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic properties of lipoamide dehydrogenase from Mycobacterium smegmatis.
    Marcinkeviciene J; Blanchard JS
    Arch Biochem Biophys; 1997 Apr; 340(2):168-76. PubMed ID: 9143318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase.
    Gazaryan IG; Krasnikov BF; Ashby GA; Thorneley RN; Kristal BS; Brown AM
    J Biol Chem; 2002 Mar; 277(12):10064-72. PubMed ID: 11744691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An inhibitor of exported Mycobacterium tuberculosis glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets.
    Harth G; Horwitz MA
    J Exp Med; 1999 May; 189(9):1425-36. PubMed ID: 10224282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Prospects for development of new antituberculous drugs].
    Tomioka H
    Kekkaku; 2002 Aug; 77(8):573-84. PubMed ID: 12235850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sclerotiorin inhibits protein kinase G from Mycobacterium tuberculosis and impairs mycobacterial growth in macrophages.
    Chen D; Ma S; He L; Yuan P; She Z; Lu Y
    Tuberculosis (Edinb); 2017 Mar; 103():37-43. PubMed ID: 28237032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclophostin and Cyclipostins analogues, new promising molecules to treat mycobacterial-related diseases.
    Nguyen PC; Madani A; Santucci P; Martin BP; Paudel RR; Delattre S; Herrmann JL; Spilling CD; Kremer L; Canaan S; Cavalier JF
    Int J Antimicrob Agents; 2018 Apr; 51(4):651-654. PubMed ID: 29241819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between the lipoamide-containing H-protein and the lipoamide dehydrogenase (L-protein) of the glycine decarboxylase multienzyme system 2. Crystal structures of H- and L-proteins.
    Faure M; Bourguignon J; Neuburger M; MacHerel D; Sieker L; Ober R; Kahn R; Cohen-Addad C; Douce R
    Eur J Biochem; 2000 May; 267(10):2890-8. PubMed ID: 10806386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.