BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 33528067)

  • 1. Short- and long-term carbon emissions from oil palm plantations converted from logged tropical peat swamp forest.
    McCalmont J; Kho LK; Teh YA; Lewis K; Chocholek M; Rumpang E; Hill T
    Glob Chang Biol; 2021 Jun; 27(11):2361-2376. PubMed ID: 33528067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon emissions from South-East Asian peatlands will increase despite emission-reduction schemes.
    Wijedasa LS; Sloan S; Page SE; Clements GR; Lupascu M; Evans TA
    Glob Chang Biol; 2018 Oct; 24(10):4598-4613. PubMed ID: 29855120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oil palm (Elaeis guineensis) plantation on tropical peatland in South East Asia: Photosynthetic response to soil drainage level for mitigation of soil carbon emissions.
    McCalmont J; Kho LK; Teh YA; Chocholek M; Rumpang E; Rowland L; Basri MHA; Hill T
    Sci Total Environ; 2023 Feb; 858(Pt 1):159356. PubMed ID: 36270353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations.
    Dommain R; Frolking S; Jeltsch-Thömmes A; Joos F; Couwenberg J; Glaser PH
    Glob Chang Biol; 2018 Nov; 24(11):5518-5533. PubMed ID: 30007100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bornean peat swamp forest is a net source of carbon dioxide to the atmosphere.
    Tang ACI; Melling L; Stoy PC; Musin KK; Aeries EB; Waili JW; Shimizu M; Poulter B; Hirata R
    Glob Chang Biol; 2020 Dec; 26(12):6931-6944. PubMed ID: 32881141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation.
    Warren M; Frolking S; Dai Z; Kurnianto S
    Mitig Adapt Strateg Glob Chang; 2017; 22(7):1041-1061. PubMed ID: 30093822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial distribution of degradation and deforestation of palm swamp peatlands and associated carbon emissions in the Peruvian Amazon.
    Marcus MS; Hergoualc'h K; Honorio Coronado EN; Gutiérrez-Vélez VH
    J Environ Manage; 2024 Feb; 351():119665. PubMed ID: 38086114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Greenhouse gas emissions during plantation stage of palm oil-based biofuel production addressing different land conversion scenarios in Malaysia.
    Kusin FM; Akhir NIM; Mohamat-Yusuff F; Awang M
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5293-5304. PubMed ID: 28004372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of a human-modified tropical peat swamp forest revealed by repeat lidar surveys.
    Wedeux B; Dalponte M; Schlund M; Hagen S; Cochrane M; Graham L; Usup A; Thomas A; Coomes D
    Glob Chang Biol; 2020 Jul; 26(7):3947-3964. PubMed ID: 32267596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation.
    Cooper HV; Evers S; Aplin P; Crout N; Dahalan MPB; Sjogersten S
    Nat Commun; 2020 Jan; 11(1):407. PubMed ID: 31964892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon accumulation of tropical peatlands over millennia: a modeling approach.
    Kurnianto S; Warren M; Talbot J; Kauffman B; Murdiyarso D; Frolking S
    Glob Chang Biol; 2015 Jan; 21(1):431-44. PubMed ID: 25044171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subsidence and carbon dioxide emissions in a smallholder peatland mosaic in Sumatra, Indonesia.
    Khasanah N; van Noordwijk M
    Mitig Adapt Strateg Glob Chang; 2019; 24(1):147-163. PubMed ID: 30662320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and temporal variability of soil N
    Hergoualc'h K; Dezzeo N; Verchot LV; Martius C; van Lent J; Del Aguila-Pasquel J; López Gonzales M
    Glob Chang Biol; 2020 Dec; 26(12):7198-7216. PubMed ID: 32949077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia.
    Carlson KM; Curran LM; Ratnasari D; Pittman AM; Soares-Filho BS; Asner GP; Trigg SN; Gaveau DA; Lawrence D; Rodrigues HO
    Proc Natl Acad Sci U S A; 2012 May; 109(19):7559-64. PubMed ID: 22523241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How can process-based modeling improve peat CO
    Swails E; Hergoualc'h K; Deng J; Frolking S; Novita N
    Sci Total Environ; 2022 Sep; 839():156153. PubMed ID: 35609697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Land use changes and GHG emissions from tropical forest conversion by oil palm plantations in Riau Province, Indonesia.
    Ramdani F; Hino M
    PLoS One; 2013; 8(7):e70323. PubMed ID: 23936186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Land use conversion from peat swamp forest to oil palm agriculture greatly modifies microclimate and soil conditions.
    Anamulai S; Sanusi R; Zubaid A; Lechner AM; Ashton-Butt A; Azhar B
    PeerJ; 2019; 7():e7656. PubMed ID: 31632845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An assessment of oil palm plantation aboveground biomass stocks on tropical peat using destructive and non-destructive methods.
    Lewis K; Rumpang E; Kho LK; McCalmont J; Teh YA; Gallego-Sala A; Hill TC
    Sci Rep; 2020 Feb; 10(1):2230. PubMed ID: 32041975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Logged peat swamp forest supports greater macrofungal biodiversity than large-scale oil palm plantations and smallholdings.
    Shuhada SN; Salim S; Nobilly F; Zubaid A; Azhar B
    Ecol Evol; 2017 Sep; 7(18):7187-7200. PubMed ID: 28944010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecosystem-scale methane flux in tropical peat swamp forest in Indonesia.
    Sakabe A; Itoh M; Hirano T; Kusin K
    Glob Chang Biol; 2018 Nov; 24(11):5123-5136. PubMed ID: 30175421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.