These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 33528245)

  • 1. Data-Driven Strategies for Accelerated Materials Design.
    Pollice R; Dos Passos Gomes G; Aldeghi M; Hickman RJ; Krenn M; Lavigne C; Lindner-D'Addario M; Nigam A; Ser CT; Yao Z; Aspuru-Guzik A
    Acc Chem Res; 2021 Feb; 54(4):849-860. PubMed ID: 33528245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Self-Driven Autonomous Material and Device Acceleration Platforms (AMADAP) for Emerging Photovoltaics Technologies.
    Zhang J; Hauch JA; Brabec CJ
    Acc Chem Res; 2024 May; 57(9):1434-1445. PubMed ID: 38652511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges.
    Chen G; Shen Z; Iyer A; Ghumman UF; Tang S; Bi J; Chen W; Li Y
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab.
    Seifrid M; Pollice R; Aguilar-Granda A; Morgan Chan Z; Hotta K; Ser CT; Vestfrid J; Wu TC; Aspuru-Guzik A
    Acc Chem Res; 2022 Sep; 55(17):2454-2466. PubMed ID: 35948428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Machine Learning in Material Synthesis and Property Prediction.
    Huang G; Guo Y; Chen Y; Nie Z
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Design-to-Device Pipeline for Data-Driven Materials Discovery.
    Cole JM
    Acc Chem Res; 2020 Mar; 53(3):599-610. PubMed ID: 32096410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design.
    Janet JP; Duan C; Nandy A; Liu F; Kulik HJ
    Acc Chem Res; 2021 Feb; 54(3):532-545. PubMed ID: 33480674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-Driven Materials Innovation and Applications.
    Wang Z; Sun Z; Yin H; Liu X; Wang J; Zhao H; Pang CH; Wu T; Li S; Yin Z; Yu XF
    Adv Mater; 2022 Sep; 34(36):e2104113. PubMed ID: 35451528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations.
    Manda T; Barasa GO; Louis H; Irfan A; Agumba JO; Lugasi SO; Pembere AMS
    J Mol Model; 2024 Jan; 30(2):43. PubMed ID: 38236500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspectives on Development of Optoelectronic Materials in Artificial Intelligence Age.
    Yuan T; Song X; Shi Y; Wei S; Han Y; Yang L; Zhang Y; Li X; Li Y; Shen L; Fan L
    Chem Asian J; 2024 Mar; 19(6):e202301088. PubMed ID: 38317532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism.
    Sakaushi K; Nishihara H
    Acc Chem Res; 2021 Aug; 54(15):3003-3015. PubMed ID: 33998232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput development of amphiphile self-assembly materials: fast-tracking synthesis, characterization, formulation, application, and understanding.
    Mulet X; Conn CE; Fong C; Kennedy DF; Moghaddam MJ; Drummond CJ
    Acc Chem Res; 2013 Jul; 46(7):1497-505. PubMed ID: 23427836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence to bring nanomedicine to life.
    Serov N; Vinogradov V
    Adv Drug Deliv Rev; 2022 May; 184():114194. PubMed ID: 35283223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Navigating the design space of inorganic materials synthesis using statistical methods and machine learning.
    Braham EJ; Davidson RD; Al-Hashimi M; Arróyave R; Banerjee S
    Dalton Trans; 2020 Aug; 49(33):11480-11488. PubMed ID: 32743629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unleashing the Power of Artificial Intelligence in Materials Design.
    Badini S; Regondi S; Pugliese R
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital Innovation Enabled Nanomaterial Manufacturing; Machine Learning Strategies and Green Perspectives.
    Konstantopoulos G; Koumoulos EP; Charitidis CA
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial intelligence and machine learning in design of mechanical materials.
    Guo K; Yang Z; Yu CH; Buehler MJ
    Mater Horiz; 2021 Apr; 8(4):1153-1172. PubMed ID: 34821909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Recent advance of novel chiral separation systems in capillary electrophoresis].
    Zhang Q
    Se Pu; 2020 Sep; 38(9):1028-1037. PubMed ID: 34213269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.