These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 33528262)
21. Optimization and Verification of Droplet Digital PCR Even-Specific Methods for the Quantification of GM Maize DAS1507 and NK603. Grelewska-Nowotko K; Żurawska-Zajfert M; Żmijewska E; Sowa S Appl Biochem Biotechnol; 2018 May; 185(1):207-220. PubMed ID: 29110175 [TBL] [Abstract][Full Text] [Related]
22. Increasing the Efficiency of Canola and Soybean GMO Detection and Quantification Using Multiplex Droplet Digital PCR. Demeke T; Lee SJ; Eng M Biology (Basel); 2022 Jan; 11(2):. PubMed ID: 35205068 [TBL] [Abstract][Full Text] [Related]
23. Performance assessment of digital PCR for the quantification of GM-maize and GM-soya events. Cottenet G; Blancpain C; Chuah PF Anal Bioanal Chem; 2019 Apr; 411(11):2461-2469. PubMed ID: 30810790 [TBL] [Abstract][Full Text] [Related]
24. Single universal primer multiplex ligation-dependent probe amplification with sequencing gel electrophoresis analysis. Shang Y; Zhu P; Xu W; Guo T; Tian W; Luo Y; Huang K Anal Biochem; 2013 Dec; 443(2):243-8. PubMed ID: 24050969 [TBL] [Abstract][Full Text] [Related]
25. Verification and applicability of endogenous reference genes for quantifying GM rice by digital PCR. Deng T; Huang W; Ren J; Ma X; Ge Y; Chen Y Anal Biochem; 2019 Dec; 587():113442. PubMed ID: 31539524 [TBL] [Abstract][Full Text] [Related]
26. Multiplex event-specific qualitative polymerase chain reaction for detecting three transgenic rice lines and application of a standard plasmid as a quantitative reference molecule. Wang X; Chen X; Xu J; Wang P; Shen W Anal Biochem; 2014 Nov; 464():1-8. PubMed ID: 25026190 [TBL] [Abstract][Full Text] [Related]
27. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification. Fu W; Zhu P; Wei S; Zhixin D; Wang C; Wu X; Li F; Zhu S Anal Bioanal Chem; 2017 Apr; 409(10):2655-2664. PubMed ID: 28154881 [TBL] [Abstract][Full Text] [Related]
28. Developing a matrix reference material for screening of transgenic rice. Li J; Wu Y; Li X; Wang Y; Zhang L; Li Y; Wu G Anal Bioanal Chem; 2015 Dec; 407(30):9153-63. PubMed ID: 26462921 [TBL] [Abstract][Full Text] [Related]
29. Real-time polymerase chain reaction-based approach for quantification of the pat gene in the T25 Zea mays event. Weighardt F; Barbati C; Paoletti C; Querci M; Kay S; De Beuckeleer M; Van den Eede G J AOAC Int; 2004; 87(6):1342-55. PubMed ID: 15675446 [TBL] [Abstract][Full Text] [Related]
30. Development of melting temperature-based SYBR Green I polymerase chain reaction methods for multiplex genetically modified organism detection. Hernández M; Rodríguez-Lázaro D; Esteve T; Prat S; Pla M Anal Biochem; 2003 Dec; 323(2):164-70. PubMed ID: 14656521 [TBL] [Abstract][Full Text] [Related]
31. Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms. Buh Gasparic M; Cankar K; Zel J; Gruden K BMC Biotechnol; 2008 Mar; 8():26. PubMed ID: 18325084 [TBL] [Abstract][Full Text] [Related]
32. Event-specific qualitative and quantitative detection of five genetically modified rice events using a single standard reference molecule. Kim JH; Park SB; Roh HJ; Shin MK; Moon GI; Hong JH; Kim HY Food Chem; 2017 Jul; 226():187-192. PubMed ID: 28254011 [TBL] [Abstract][Full Text] [Related]
33. Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5'-transgene integration sequence. Yang L; Xu S; Pan A; Yin C; Zhang K; Wang Z; Zhou Z; Zhang D J Agric Food Chem; 2005 Nov; 53(24):9312-8. PubMed ID: 16302741 [TBL] [Abstract][Full Text] [Related]
34. A 'turn-on' ultra-sensitive multiplex real-time fluorescent quantitative biosensor mediated by a universal primer and probe for the detection of genetically modified organisms. Xiao B; Niu C; Shang Y; Xu Y; Huang K; Zhang X; Xu W Food Chem; 2020 Nov; 330():127247. PubMed ID: 32535319 [TBL] [Abstract][Full Text] [Related]
35. Multiplexed target detection using DNA-binding dye chemistry in droplet digital PCR. McDermott GP; Do D; Litterst CM; Maar D; Hindson CM; Steenblock ER; Legler TC; Jouvenot Y; Marrs SH; Bemis A; Shah P; Wong J; Wang S; Sally D; Javier L; Dinio T; Han C; Brackbill TP; Hodges SP; Ling Y; Klitgord N; Carman GJ; Berman JR; Koehler RT; Hiddessen AL; Walse P; Bousse L; Tzonev S; Hefner E; Hindson BJ; Cauly TH; Hamby K; Patel VP; Regan JF; Wyatt PW; Karlin-Neumann GA; Stumbo DP; Lowe AJ Anal Chem; 2013 Dec; 85(23):11619-27. PubMed ID: 24180464 [TBL] [Abstract][Full Text] [Related]
37. Novel multiplex PCR assay using locked nucleic acid (LNA)-based universal primers for the simultaneous detection of five swine viruses. Chen R; Gao XB; Yu XL; Song CX; Qiu Y J Virol Methods; 2016 Feb; 228():60-6. PubMed ID: 26615807 [TBL] [Abstract][Full Text] [Related]
38. A multiplex droplet digital PCR assay for non-invasive prenatal testing of fetal aneuploidies. Tan C; Chen X; Wang F; Wang D; Cao Z; Zhu X; Lu C; Yang W; Gao N; Gao H; Guo Y; Zhu L Analyst; 2019 Mar; 144(7):2239-2247. PubMed ID: 30663740 [TBL] [Abstract][Full Text] [Related]
39. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events. Demeke T; Eng M Biomol Detect Quantif; 2018 May; 15():24-29. PubMed ID: 29922591 [TBL] [Abstract][Full Text] [Related]
40. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize. Xu X; Peng C; Wang X; Chen X; Wang Q; Xu J Transgenic Res; 2016 Dec; 25(6):855-864. PubMed ID: 27632191 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]