These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33528394)

  • 1. Chromo-modal dispersion for optical communication and time-stretch spectroscopy.
    Liao R; Hon NK; Buckley BW; Diebold ED; Jalali B
    Opt Lett; 2021 Feb; 46(3):500-503. PubMed ID: 33528394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide.
    Diebold ED; Hon NK; Tan Z; Chou J; Sienicki T; Wang C; Jalali B
    Opt Express; 2011 Nov; 19(24):23809-17. PubMed ID: 22109406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active On-Chip Dispersion Control Using a Tunable Silicon Bragg Grating.
    Klitis C; Sorel M; Strain MJ
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31466380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable dispersion compensator based on uniform fiber Bragg grating and its application to tunable pulse repetition-rate multiplication.
    Han YG; Lee S
    Opt Express; 2005 Nov; 13(23):9224-9. PubMed ID: 19503122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-infrared spectroscopy of low-transmittance samples by a high-power time-stretch spectrometer using an arrayed waveguide grating (AWG).
    Kawagoe H; Sera H; Sahara J; Akai S; Watanabe K; Shinoyama K; Nagashima T; Yokoyama T; Ikarashi A; Yamada G
    Sci Rep; 2023 Oct; 13(1):17261. PubMed ID: 37828139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-channel tunable optical dispersion compensator based on linear translation of a waveguide grating router.
    Sinefeld D; Ben-Ezra S; Doerr CR; Marom DM
    Opt Lett; 2011 Apr; 36(8):1410-2. PubMed ID: 21499373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers.
    Zhou S; Kuznetsova L; Chong A; Wise F
    Opt Express; 2005 Jun; 13(13):4869-77. PubMed ID: 19498473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bandwidth equalization of purely phase-sampled fiber Bragg gratings for broadband dispersion and dispersion slope compensation.
    Lee H; Agrawal G
    Opt Express; 2004 Nov; 12(23):5595-602. PubMed ID: 19488193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon.
    Seno K; Suzuki K; Ooba N; Watanabe K; Ishii M; Ono H; Mino S
    Opt Express; 2010 Aug; 18(18):18565-79. PubMed ID: 20940749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Dispersion-Enhanced Sensitivity in a Two-Mode Optical Waveguide with an Asymmetric Diffraction Grating.
    Tsarev A
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon subwavelength modal Bragg grating filters with narrow bandwidth and high optical rejection.
    Oser D; Pérez-Galacho D; Le Roux X; Tanzilli S; Vivien L; Labonté L; Cassan É; Alonso-Ramos C
    Opt Lett; 2020 Oct; 45(20):5784-5787. PubMed ID: 33057284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersion compensation for high bit rate fiber-optic communication using a dynamically tunable optical filter.
    Tamil LS; Li Y; Dugan JM; Prabhu KA
    Appl Opt; 1994 Mar; 33(9):1697-706. PubMed ID: 20885496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window.
    Qiu Y; Xu J; Wong KK; Tsia KK
    Opt Express; 2012 Oct; 20(22):24115-23. PubMed ID: 23187174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast time-stretch imaging at 932 nm through a new highly-dispersive fiber.
    Wei X; Kong C; Sy S; Ko H; Tsia KK; Wong KK
    Biomed Opt Express; 2016 Dec; 7(12):5208-5217. PubMed ID: 28018737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of distributed resistive metal film heaters in thermally tunable dispersion compensators for high-bit-rate communication systems.
    Steinvurzel P; MacHarrie RA; Baldwin KW; Van Hise CW; Eggleton BJ; Rogers JA
    Appl Opt; 2005 May; 44(14):2782-91. PubMed ID: 15943330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast laser-scanning time-stretch imaging at visible wavelengths.
    Wu JL; Xu YQ; Xu JJ; Wei XM; Chan AC; Tang AH; Lau AK; Chung BM; Cheung Shum H; Lam EY; Wong KK; Tsia KK
    Light Sci Appl; 2017 Jan; 6(1):e16196. PubMed ID: 30167195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dispersion of fiber Bragg grating mirrors on formation of optical power spectrum in Raman fiber lasers.
    Dalloz N; Randoux S; Suret P
    Opt Lett; 2010 Aug; 35(15):2505-7. PubMed ID: 20680039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis of the optimal length and profile of a linearly chirped fiber Bragg grating for dispersion compensation.
    Thibault S; Lauzon J; Cliche JF; Martin J; Duguay MA; Têtu M
    Opt Lett; 1995 Mar; 20(6):647-9. PubMed ID: 19859284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser.
    Klimczak M; Soboń G; Kasztelanic R; Abramski KM; Buczyński R
    Sci Rep; 2016 Jan; 6():19284. PubMed ID: 26759188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation.
    Ma T; Nallapan K; Guerboukha H; Skorobogatiy M
    Opt Express; 2017 May; 25(10):11009-11026. PubMed ID: 28788787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.