These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33528411)

  • 1. Photoconductive terahertz generation in semi-insulating GaAs and InP under the extremes of bias field and pump fluence.
    Alfihed S; Jenne MF; Ciocoiu A; Foulds IG; Holzman JF
    Opt Lett; 2021 Feb; 46(3):572-575. PubMed ID: 33528411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of Bow-Tie Antenna Structures for Semi-Insulating GaAs and InP Photoconductive Terahertz Emitters.
    Alfihed S; Foulds IG; Holzman JF
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoconductive terahertz generation from textured semiconductor materials.
    Collier CM; Stirling TJ; Hristovski IR; Krupa JD; Holzman JF
    Sci Rep; 2016 Mar; 6():23185. PubMed ID: 26979292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluence and polarisation dependence of GaAs based Lateral Photo-Dember terahertz emitters.
    McBryde D; Barnes ME; Berry SA; Gow P; Beere HE; Ritchie DA; Apostolopoulos V
    Opt Express; 2014 Feb; 22(3):3234-43. PubMed ID: 24663615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection.
    Singh A; Pal S; Surdi H; Prabhu SS; Mathimalar S; Nanal V; Pillay RG; Döhler GH
    Opt Express; 2015 Mar; 23(5):6656-61. PubMed ID: 25836882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs.
    Tani M; Matsuura S; Sakai K; Nakashima S
    Appl Opt; 1997 Oct; 36(30):7853-9. PubMed ID: 18264312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Perovskite Terahertz Photoconductive Antenna.
    Obraztsov PA; Bulgakova VV; Chizhov PA; Ushakov AA; Gets DS; Makarov SV; Bukin VV
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33530450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna.
    Upadhya PC; Fan W; Burnett A; Cunningham J; Davies AG; Linfield EH; Lloyd-Hughes J; Castro-Camus E; Johnston MB; Beere H
    Opt Lett; 2007 Aug; 32(16):2297-9. PubMed ID: 17700764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas.
    Liu TA; Tani M; Nakajima M; Hangyo M; Sakai K; Nakashima S; Pan CL
    Opt Express; 2004 Jun; 12(13):2954-9. PubMed ID: 19483812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-space terahertz radiation from a LT-GaAs-on-quartz large-area photoconductive emitter.
    Bacon DR; Burnett AD; Swithenbank M; Russell C; Li L; Wood CD; Cunningham J; Linfield EH; Davies AG; Dean P; Freeman JR
    Opt Express; 2016 Nov; 24(23):26986-26997. PubMed ID: 27857425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of heteroepitaxial growth on LT-GaAs: ultrafast optical properties.
    Afalla J; Prieto EA; Husay HA; Gonzales KC; Catindig G; Abulikemu A; Somintac A; Salvador A; Estacio E; Tani M; Hase M
    J Phys Condens Matter; 2021 Jun; 33(31):. PubMed ID: 34034248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation.
    Jooshesh A; Fesharaki F; Bahrami-Yekta V; Mahtab M; Tiedje T; Darcie TE; Gordon R
    Opt Express; 2017 Sep; 25(18):22140-22148. PubMed ID: 29041502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of continuous-wave terahertz wave generation and bias-field-dependent saturation in GaAs:O and LT-GaAs antennas.
    Chen K; Li YT; Yang MH; Cheung WY; Pan CL; Chan KT
    Opt Lett; 2009 Apr; 34(7):935-7. PubMed ID: 19340176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Optically-Generated Carriers in Si (100) and Si (111) Substrate-Grown GaAs/AlGaAs Core-Shell Nanowires.
    Delos Santos R; Ibañes JJ; Balgos MH; Jaculbia R; Afalla JP; Bailon-Somintac M; Estacio E; Salvador A; Somintac A; Que C; Tsuzuki S; Yamamoto K; Tani M
    Nanoscale Res Lett; 2015 Dec; 10(1):1050. PubMed ID: 26293496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas.
    Hale PJ; Madeo J; Chin C; Dhillon SS; Mangeney J; Tignon J; Dani KM
    Opt Express; 2014 Oct; 22(21):26358-64. PubMed ID: 25401668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced terahertz emission bandwidth from photoconductive antenna by manipulating carrier dynamics of semiconducting substrate with embedded plasmonic metasurface.
    Bhattacharya A; Ghindani D; Prabhu SS
    Opt Express; 2019 Oct; 27(21):30272-30279. PubMed ID: 31684276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modulation-doped heterostructure-based terahertz photoconductive antenna emitter with recessed metal contacts.
    Afalla J; De Los Reyes A; Cabello NI; Vistro VDA; Faustino MA; Ferrolino JP; Prieto EA; Bardolaza H; Catindig GAR; Gonzales KC; Mag-Usara VK; Kitahara H; Somintac AS; Salvador AA; Tani M; Estacio ES
    Sci Rep; 2020 Nov; 10(1):19926. PubMed ID: 33199727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized Spintronic Terahertz Emitters Based on Epitaxial Grown Fe/Pt Layer Structures.
    Torosyan G; Keller S; Scheuer L; Beigang R; Papaioannou ET
    Sci Rep; 2018 Jan; 8(1):1311. PubMed ID: 29358715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-plasmonic improvement in photoconductive THz emitters using nano- and micro-structured electrodes.
    Singh A; Welsch M; Winnerl S; Helm M; Schneider H
    Opt Express; 2020 Nov; 28(24):35490-35497. PubMed ID: 33379662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz emission enhancement in semi-insulating gallium arsenide integrated with subwavelength one-dimensional metal line array.
    Faustino MA; Lopez LP; Pauline Afalla J; Muldera J; Hermosa N; Salvador AA; Somintac AS; Estacio ES
    Opt Lett; 2016 Oct; 41(19):4515-4517. PubMed ID: 27749869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.