BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 33528485)

  • 1. Activated penetrant dynamics in glass forming liquids: size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility.
    Mei B; Schweizer KS
    Soft Matter; 2021 Mar; 17(9):2624-2639. PubMed ID: 33528485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of the effect of external stress on the activated dynamics and transport of dilute penetrants in supercooled liquids and glasses.
    Mei B; Schweizer KS
    J Chem Phys; 2021 Aug; 155(5):054505. PubMed ID: 34364324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions.
    Zhang R; Schweizer KS
    J Chem Phys; 2015 Oct; 143(14):144906. PubMed ID: 26472397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative activated hopping dynamics in binary glass-forming liquids: effects of the size ratio, composition, and interparticle interactions.
    Ma XJ; Zhang R
    Soft Matter; 2023 Jun; 19(25):4746-4771. PubMed ID: 37317997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlated matrix-fluctuation-mediated activated transport of dilute penetrants in glass-forming liquids and suspensions.
    Zhang R; Schweizer KS
    J Chem Phys; 2017 May; 146(19):194906. PubMed ID: 28527449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Penetrant shape effects on activated dynamics and selectivity in polymer melts and networks based on self-consistent cooperative hopping theory.
    Mei B; Schweizer KS
    Soft Matter; 2023 Nov; 19(45):8744-8763. PubMed ID: 37937332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics-Structure-Dynamics Correlations and Nonuniversal Effects in the Elastically Collective Activated Hopping Theory of Glass-Forming Liquids.
    Mei B; Zhou Y; Schweizer KS
    J Phys Chem B; 2020 Jul; 124(28):6121-6131. PubMed ID: 32633526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A collective elastic fluctuation mechanism for decoupling and stretched relaxation in glassy colloidal and molecular liquids.
    Xie SJ; Schweizer KS
    J Chem Phys; 2020 Jan; 152(3):034502. PubMed ID: 31968977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-consistent hopping theory of activated relaxation and diffusion of dilute penetrants in dense crosslinked polymer networks.
    Mei B; Lin TW; Sing CE; Schweizer KS
    J Chem Phys; 2023 May; 158(18):. PubMed ID: 37166070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic Theory of Coupled Slow Activated Dynamics in Glass-Forming Binary Mixtures.
    Zhang R; Schweizer KS
    J Phys Chem B; 2018 Apr; 122(13):3465-3479. PubMed ID: 29346732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics.
    Wang JG; Li Q; Peng X; McKenna GB; Zia RN
    Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of the physical factors that control activated transport of penetrants in chemically complex glass-forming liquids.
    Mei B; Sheridan GS; Evans CM; Schweizer KS
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2210094119. PubMed ID: 36194629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of collective elasticity on activated structural relaxation, yielding, and steady state flow in hard sphere fluids and colloidal suspensions under strong deformation.
    Ghosh A; Schweizer KS
    J Chem Phys; 2020 Nov; 153(19):194502. PubMed ID: 33218226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activated hopping and dynamical fluctuation effects in hard sphere suspensions and fluids.
    Saltzman EJ; Schweizer KS
    J Chem Phys; 2006 Jul; 125(4):44509. PubMed ID: 16942158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. I. General formulation and application to hard sphere fluids.
    Mirigian S; Schweizer KS
    J Chem Phys; 2014 May; 140(19):194506. PubMed ID: 24852549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated dynamics in dense fluids of attractive nonspherical particles. II. Elasticity, barriers, relaxation, fragility, and self-diffusion.
    Tripathy M; Schweizer KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041407. PubMed ID: 21599158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental test of a predicted dynamics-structure-thermodynamics connection in molecularly complex glass-forming liquids.
    Mei B; Zhou Y; Schweizer KS
    Proc Natl Acad Sci U S A; 2021 May; 118(18):. PubMed ID: 33903245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of shape on the glassy dynamics of hard nonspherical particle fluids. II. Barriers, relaxation, fragility, kinetic vitrification, and universality.
    Tripathy M; Schweizer KS
    J Chem Phys; 2009 Jun; 130(24):244907. PubMed ID: 19566181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of activated dynamics and glass transition of hard colloids in two dimensions.
    Zhang BK; Li HS; Tian WD; Chen K; Ma YQ
    J Chem Phys; 2014 Mar; 140(9):094506. PubMed ID: 24606367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear and nonlinear rheology and structural relaxation in dense glassy and jammed soft repulsive pNIPAM microgel suspensions.
    Ghosh A; Chaudhary G; Kang JG; Braun PV; Ewoldt RH; Schweizer KS
    Soft Matter; 2019 Jan; 15(5):1038-1052. PubMed ID: 30657517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.