These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 33528590)
61. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918 [TBL] [Abstract][Full Text] [Related]
62. The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Otte JM; Harter J; Laufer K; Blackwell N; Straub D; Kappler A; Kleindienst S Environ Microbiol; 2018 Jul; 20(7):2483-2499. PubMed ID: 29708639 [TBL] [Abstract][Full Text] [Related]
63. Bacteria associated with iron seeps in a sulfur-rich, neutral pH, freshwater ecosystem. Haaijer SC; Harhangi HR; Meijerink BB; Strous M; Pol A; Smolders AJ; Verwegen K; Jetten MS; Op den Camp HJ ISME J; 2008 Dec; 2(12):1231-42. PubMed ID: 18754044 [TBL] [Abstract][Full Text] [Related]
64. Bacterial glycerol oxidation coupled to sulfate reduction at neutral and acidic pH. Santos SC; Liebensteiner MG; van Gelder AH; Dimitrov MR; Almeida PF; Quintella CM; Stams AJM; Sánchez-Andrea I J Gen Appl Microbiol; 2018 Mar; 64(1):1-8. PubMed ID: 29187682 [TBL] [Abstract][Full Text] [Related]
65. Distribution and diversity of bacterial communities and sulphate-reducing bacteria in a paddy soil irrigated with acid mine drainage. Wang H; Guo CL; Yang CF; Lu GN; Chen MQ; Dang Z J Appl Microbiol; 2016 Jul; 121(1):196-206. PubMed ID: 27005987 [TBL] [Abstract][Full Text] [Related]
66. Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology. Dong H; Zhang G; Jiang H; Yu B; Chapman LR; Lucas CR; Fields MW Microb Ecol; 2006 Jan; 51(1):65-82. PubMed ID: 16400537 [TBL] [Abstract][Full Text] [Related]
67. Characterization of the bacterial community in the sediment of a brackish lake with oyster aquaculture. Santander-De Leon SM; Okunishi S; Kihira M; Nakano M; Nuñal SN; Hidaka M; Yoshikawa T; Maeda H Biocontrol Sci; 2013; 18(1):29-40. PubMed ID: 23538849 [TBL] [Abstract][Full Text] [Related]
68. Implications from distinct sulfate-reducing bacteria populations between cattle manure and digestate in the elucidation of H St-Pierre B; Wright AG Appl Microbiol Biotechnol; 2017 Jul; 101(13):5543-5556. PubMed ID: 28389712 [TBL] [Abstract][Full Text] [Related]
69. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments. Varon-Lopez M; Dias AC; Fasanella CC; Durrer A; Melo IS; Kuramae EE; Andreote FD Environ Microbiol; 2014 Mar; 16(3):845-55. PubMed ID: 24033859 [TBL] [Abstract][Full Text] [Related]
70. Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Purdy KJ; Nedwell DB; Embley TM Appl Environ Microbiol; 2003 Jun; 69(6):3181-91. PubMed ID: 12788715 [TBL] [Abstract][Full Text] [Related]
71. Spatial distribution patterns of benthic microbial communities along the Pearl Estuary, China. Liu J; Yang H; Zhao M; Zhang XH Syst Appl Microbiol; 2014 Dec; 37(8):578-89. PubMed ID: 25467555 [TBL] [Abstract][Full Text] [Related]
72. Structure of microbial communities and hydrocarbon-dependent sulfate reduction in the anoxic layer of a polluted microbial mat. Abed RM; Musat N; Musat F; Mussmann M Mar Pollut Bull; 2011 Mar; 62(3):539-46. PubMed ID: 21194714 [TBL] [Abstract][Full Text] [Related]
73. Illumina sequencing-based analysis of sediment bacteria community in different trophic status freshwater lakes. Wan Y; Ruan X; Zhang Y; Li R Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28173613 [TBL] [Abstract][Full Text] [Related]
74. Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Foti M; Sorokin DY; Lomans B; Mussman M; Zacharova EE; Pimenov NV; Kuenen JG; Muyzer G Appl Environ Microbiol; 2007 Apr; 73(7):2093-100. PubMed ID: 17308191 [TBL] [Abstract][Full Text] [Related]
75. Diversity and in situ quantification of Acidobacteria subdivision 1 in an acidic mining lake. Kleinsteuber S; Müller FD; Chatzinotas A; Wendt-Potthoff K; Harms H FEMS Microbiol Ecol; 2008 Jan; 63(1):107-17. PubMed ID: 18028401 [TBL] [Abstract][Full Text] [Related]
76. Dominant bacterial phyla in caves and their predicted functional roles in C and N cycle. De Mandal S; Chatterjee R; Kumar NS BMC Microbiol; 2017 Apr; 17(1):90. PubMed ID: 28399822 [TBL] [Abstract][Full Text] [Related]
77. Physiological and molecular characterization of anaerobic benzene-degrading mixed cultures. Ulrich AC; Edwards EA Environ Microbiol; 2003 Feb; 5(2):92-102. PubMed ID: 12558592 [TBL] [Abstract][Full Text] [Related]
78. Microbial communities from Arctic marine sediments respond slowly to methane addition during ex situ enrichments. Klasek S; Torres ME; Bartlett DH; Tyler M; Hong WL; Colwell F Environ Microbiol; 2020 May; 22(5):1829-1846. PubMed ID: 31840312 [TBL] [Abstract][Full Text] [Related]
79. Methanogenic and Sulfate-Reducing Activities in a Hypersaline Microbial Mat and Associated Microbial Diversity. Cadena S; García-Maldonado JQ; López-Lozano NE; Cervantes FJ Microb Ecol; 2018 May; 75(4):930-940. PubMed ID: 29116347 [TBL] [Abstract][Full Text] [Related]
80. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). Schubert CJ; Vazquez F; Lösekann-Behrens T; Knittel K; Tonolla M; Boetius A FEMS Microbiol Ecol; 2011 Apr; 76(1):26-38. PubMed ID: 21244447 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]