These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 33529632)
1. Tuning structure of spent coffee ground lignin by temperature fractionation to improve lignin-based carbon nanofibers mechanical performance. Du B; Zhu H; Wang X; Xiao LP; Ma J; Chen X; Zhou J; Sun RC Int J Biol Macromol; 2021 Mar; 174():254-262. PubMed ID: 33529632 [TBL] [Abstract][Full Text] [Related]
2. Effective fractionation strategy of sugarcane bagasse lignin to fabricate quality lignin-based carbon nanofibers supercapacitors. Du B; Chai L; Zhu H; Cheng J; Wang X; Chen X; Zhou J; Sun RC Int J Biol Macromol; 2021 Aug; 184():604-617. PubMed ID: 34171257 [TBL] [Abstract][Full Text] [Related]
3. Unlocking the response of lignin structure by depolymerization process improved lignin-based carbon nanofibers preparation and mechanical strength. Du B; Chen C; Sun Y; Yang M; Yu M; Liu B; Wang X; Zhou J Int J Biol Macromol; 2020 Aug; 156():669-680. PubMed ID: 32320802 [TBL] [Abstract][Full Text] [Related]
4. Multifunction lignin-based carbon nanofibers with enhanced electromagnetic wave absorption and surpercapacitive energy storage capabilities. Du B; Zhu H; Bai Y; Xu J; Pan Z; Wang Q; Wang X; Zhou J Int J Biol Macromol; 2022 Feb; 199():201-211. PubMed ID: 34995658 [TBL] [Abstract][Full Text] [Related]
6. Fabricating lignin-based carbon nanofibers as versatile supercapacitors from food wastes. Du B; Wang X; Chai L; Wang X; Pan Z; Chen X; Zhou J; Sun RC Int J Biol Macromol; 2022 Jan; 194():632-643. PubMed ID: 34822819 [TBL] [Abstract][Full Text] [Related]
7. Effective Removal of Pb(II) Ions by Electrospun PAN/Sago Lignin-based Activated Carbon Nanofibers. Nordin NA; Abdul Rahman N; Abdullah AH Molecules; 2020 Jul; 25(13):. PubMed ID: 32640766 [TBL] [Abstract][Full Text] [Related]
8. Improved photocatalytic property of lignin-derived carbon nanofibers through catalyst synergy. Zhai G; Zhou J; Xie M; Jia C; Hu Z; Xiang H; Zhu M Int J Biol Macromol; 2023 Apr; 233():123588. PubMed ID: 36764341 [TBL] [Abstract][Full Text] [Related]
9. Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer. Youe WJ; Lee SM; Lee SS; Lee SH; Kim YS Int J Biol Macromol; 2016 Jan; 82():497-504. PubMed ID: 26459170 [TBL] [Abstract][Full Text] [Related]
10. Lignin-based carbon nanofibe rs: Morphologies, properties, and features as substrates for pseudocapacitor electrodes. Hu P; Jin H; Wang K; Zhao Z; Qu W Int J Biol Macromol; 2021 Dec; 193(Pt A):519-527. PubMed ID: 34695494 [TBL] [Abstract][Full Text] [Related]
11. Study on biomass based nanofibers preparation by electrospinning. Ma A; Li C; Du W; Chang J J Nanosci Nanotechnol; 2014 Sep; 14(9):7204-10. PubMed ID: 25924391 [TBL] [Abstract][Full Text] [Related]
12. A novel partially biobased PAN-lignin blend as a potential carbon fiber precursor. Seydibeyoğlu MÖ J Biomed Biotechnol; 2012; 2012():598324. PubMed ID: 23118513 [TBL] [Abstract][Full Text] [Related]
13. Thermoelectric properties of electrospun carbon nanofibres derived from lignin. Dalton N; Lynch RP; Collins MN; Culebras M Int J Biol Macromol; 2019 Jan; 121():472-479. PubMed ID: 30321639 [TBL] [Abstract][Full Text] [Related]
14. Facile preparation of lignin-containing cellulose nanofibrils from sugarcane bagasse by mild soda-oxygen pulping. Yao L; Hu S; Wang X; Lin M; Zhang C; Chen Y; Yue F; Qi H Carbohydr Polym; 2022 Aug; 290():119480. PubMed ID: 35550769 [TBL] [Abstract][Full Text] [Related]
15. Manufacturing biodegradable lignocellulosic films with tunable properties from spent coffee grounds: A sustainable alternative to plastics. Zhang S; Zhong X; Chen J; Nilghaz A; Yun X; Wan X; Tian J Int J Biol Macromol; 2024 Jul; 273(Pt 1):132918. PubMed ID: 38844282 [TBL] [Abstract][Full Text] [Related]
16. Antioxidant and ultraviolet shielding performance of lignin-polysaccharide complex isolated from spent coffee ground. Fu L; Gong Y; Zhou Q; Ou Z; Rao X; Wang S; Huo C; Du X Int J Biol Macromol; 2023 Mar; 230():123245. PubMed ID: 36639080 [TBL] [Abstract][Full Text] [Related]
17. Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors. Adabi M; Saber R; Faridi-Majidi R; Faridbod F Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():673-8. PubMed ID: 25579970 [TBL] [Abstract][Full Text] [Related]
18. Dual pretreatment of mixing H Chen WH; Ho KY; Lee KT; Ding L; Andrew Lin KY; Rajendran S; Singh Y; Chang JS Environ Res; 2022 Dec; 215(Pt 1):114016. PubMed ID: 35977586 [TBL] [Abstract][Full Text] [Related]
19. Lignin-Based/Polypyrrole Carbon Nanofiber Electrode With Enhanced Electrochemical Properties by Electrospun Method. Hu ZR; Li DD; Kim TH; Kim MS; Xu T; Ma MG; Choi SE; Si C Front Chem; 2022; 10():841956. PubMed ID: 35211457 [TBL] [Abstract][Full Text] [Related]
20. Lignin-containing cellulose nanofibers made with microwave-aid green solvent treatment for magnetic fluid stabilization. Liu C; Li Z; Li MC; Chen W; Xu W; Hong S; Wu Q; Mei C Carbohydr Polym; 2022 Sep; 291():119573. PubMed ID: 35698338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]