These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 33529644)

  • 21. In vivo cytological and chemical analysis of Casparian strips using stimulated Raman scattering microscopy.
    Man Y; Zhao Y; Ye R; Lin J; Jing Y
    J Plant Physiol; 2018 Jan; 220():136-144. PubMed ID: 29175545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin.
    Naseer S; Lee Y; Lapierre C; Franke R; Nawrath C; Geldner N
    Proc Natl Acad Sci U S A; 2012 Jun; 109(25):10101-6. PubMed ID: 22665765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Primary Fatty Alcohols Are Major Components of Suberized Root Tissues of Arabidopsis in the Form of Alkyl Hydroxycinnamates.
    Delude C; Fouillen L; Bhar P; Cardinal MJ; Pascal S; Santos P; Kosma DK; Joubès J; Rowland O; Domergue F
    Plant Physiol; 2016 Jul; 171(3):1934-50. PubMed ID: 27231100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Apoplastic diffusion barriers in Arabidopsis.
    Nawrath C; Schreiber L; Franke RB; Geldner N; Reina-Pinto JJ; Kunst L
    Arabidopsis Book; 2013 Dec; 11():e0167. PubMed ID: 24465172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Casparian strips in needles are more solute permeable than endodermal transport barriers in roots of Pinus bungeana.
    Wu X; Lin J; Lin Q; Wang J; Schreiber L
    Plant Cell Physiol; 2005 Nov; 46(11):1799-808. PubMed ID: 16170202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GDSL-domain proteins have key roles in suberin polymerization and degradation.
    Ursache R; De Jesus Vieira Teixeira C; Dénervaud Tendon V; Gully K; De Bellis D; Schmid-Siegert E; Grube Andersen T; Shekhar V; Calderon S; Pradervand S; Nawrath C; Geldner N; Vermeer JEM
    Nat Plants; 2021 Mar; 7(3):353-364. PubMed ID: 33686223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots.
    Zeier J; Ruel K; Ryser U; Schreiber L
    Planta; 1999 Jul; 209(1):1-12. PubMed ID: 10467026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport barriers made of cutin, suberin and associated waxes.
    Schreiber L
    Trends Plant Sci; 2010 Oct; 15(10):546-53. PubMed ID: 20655799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix).
    Schreiber L; Franke R; Hartmann KD; Ranathunge K; Steudle E
    J Exp Bot; 2005 May; 56(415):1427-36. PubMed ID: 15809280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae.
    Thomas R; Fang X; Ranathunge K; Anderson TR; Peterson CA; Bernards MA
    Plant Physiol; 2007 May; 144(1):299-311. PubMed ID: 17494920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transcription factors.
    Shukla V; Han JP; Cléard F; Lefebvre-Legendre L; Gully K; Flis P; Berhin A; Andersen TG; Salt DE; Nawrath C; Barberon M
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34551972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The exodermis: a variable apoplastic barrier.
    Hose E; Clarkson DT; Steudle E; Schreiber L; Hartung W
    J Exp Bot; 2001 Dec; 52(365):2245-64. PubMed ID: 11709575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suberin--a biopolyester forming apoplastic plant interfaces.
    Franke R; Schreiber L
    Curr Opin Plant Biol; 2007 Jun; 10(3):252-9. PubMed ID: 17434790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water uptake by roots: effects of water deficit.
    Steudle E
    J Exp Bot; 2000 Sep; 51(350):1531-42. PubMed ID: 11006304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suberin research in the genomics era--new interest for an old polymer.
    Ranathunge K; Schreiber L; Franke R
    Plant Sci; 2011 Mar; 180(3):399-413. PubMed ID: 21421386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Comprehensive Biophysical Model of Ion and Water Transport in Plant Roots. I. Clarifying the Roles of Endodermal Barriers in the Salt Stress Response.
    Foster KJ; Miklavcic SJ
    Front Plant Sci; 2017; 8():1326. PubMed ID: 28804493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cutinized and suberized barriers in leaves and roots: Similarities and differences.
    Grünhofer P; Schreiber L
    J Plant Physiol; 2023 Mar; 282():153921. PubMed ID: 36780757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Groups of multi-cellular passage cells in the root exodermis of
    Ejiri M; Shiono K
    Plant Signal Behav; 2020; 15(2):1719749. PubMed ID: 32013709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptional networks regulating suberin and lignin in endodermis link development and ABA response.
    Xu H; Liu P; Wang C; Wu S; Dong C; Lin Q; Sun W; Huang B; Xu M; Tauqeer A; Wu S
    Plant Physiol; 2022 Sep; 190(2):1165-1181. PubMed ID: 35781829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis.
    Höfer R; Briesen I; Beck M; Pinot F; Schreiber L; Franke R
    J Exp Bot; 2008; 59(9):2347-60. PubMed ID: 18544608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.