These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 33529657)
41. Influence of coronary stenosis location on diagnostic performance of machine learning-based fractional flow reserve from CT angiography. Renker M; Baumann S; Hamm CW; Tesche C; Kim WK; Savage RH; Coenen A; Nieman K; De Geer J; Persson A; Kruk M; Kepka C; Yang DH; Schoepf UJ J Cardiovasc Comput Tomogr; 2021; 15(6):492-498. PubMed ID: 34119471 [TBL] [Abstract][Full Text] [Related]
42. [Value of maximum area stenosis combined with perivascular fat attenuation index in predicting hemodynamically significant coronary artery disease]. Shan D; Wang G; Wang X; Ding Y; Chen Y; Chen J Nan Fang Yi Ke Da Xue Xue Bao; 2021 Jul; 41(7):988-994. PubMed ID: 34308847 [TBL] [Abstract][Full Text] [Related]
43. Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve. Wong DT; Ko BS; Cameron JD; Nerlekar N; Leung MC; Malaiapan Y; Crossett M; Leong DP; Worthley SG; Troupis J; Meredith IT; Seneviratne SK J Am Coll Cardiol; 2013 Mar; 61(12):1271-9. PubMed ID: 23414792 [TBL] [Abstract][Full Text] [Related]
48. Influence of operator expertise and coronary luminal segmentation technique on diagnostic performance, precision and reproducibility of reduced-order CT-derived fractional flow reserve technique. Ihdayhid AR; Sakaguchi T; Kerrisk B; Hislop-Jambrich J; Fujisawa Y; Nerlekar N; Cameron JD; Seneviratne SK; Ko BS J Cardiovasc Comput Tomogr; 2020; 14(4):356-362. PubMed ID: 31787591 [TBL] [Abstract][Full Text] [Related]
49. Non-invasive prediction of hemodynamically significant coronary artery stenoses by contrast density difference in coronary CT angiography. Hell MM; Dey D; Marwan M; Achenbach S; Schmid J; Schuhbaeck A Eur J Radiol; 2015 Aug; 84(8):1502-1508. PubMed ID: 26001435 [TBL] [Abstract][Full Text] [Related]
50. CT-derived fractional flow reserve in intracranial arterial stenosis: A pilot study based on computational fluid dynamics. Yin Z; Zhou C; Guo J; Wei Y; Ma Y; Zhou F; Zhu W; Zhang LJ Eur J Radiol; 2024 Feb; 171():111285. PubMed ID: 38181628 [TBL] [Abstract][Full Text] [Related]
51. CT Angiography for the Prediction of Hemodynamic Significance in Intermediate and Severe Lesions: Head-to-Head Comparison With Quantitative Coronary Angiography Using Fractional Flow Reserve as the Reference Standard. Budoff MJ; Nakazato R; Mancini GB; Gransar H; Leipsic J; Berman DS; Min JK JACC Cardiovasc Imaging; 2016 May; 9(5):559-64. PubMed ID: 26897669 [TBL] [Abstract][Full Text] [Related]
52. Comparison of quantitative stenosis characteristics at routine coronary computed tomography angiography with invasive fractional flow reserve for assessing lesion-specific ischemia. Wang R; Baumann S; Schoepf UJ; Meinel FG; Rier JD; Morris JZ; Möllmann H; Hamm CW; Steinberg DH; Renker M J Cardiovasc Comput Tomogr; 2015; 9(6):546-52. PubMed ID: 26344482 [TBL] [Abstract][Full Text] [Related]
53. Diagnostic Value of Transluminal Attenuation Gradient for the Presence of Ischemia as Defined by Fractional Flow Reserve and Quantitative Positron Emission Tomography. Bom MJ; Driessen RS; Stuijfzand WJ; Raijmakers PG; Van Kuijk CC; Lammertsma AA; van Rossum AC; van Royen N; Knuuti J; Mäki M; Nieman K; Min JK; Leipsic JA; Danad I; Knaapen P JACC Cardiovasc Imaging; 2019 Feb; 12(2):323-333. PubMed ID: 29248645 [TBL] [Abstract][Full Text] [Related]