These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33529801)

  • 1. Nanoparticles potentially mediate salt stress tolerance in plants.
    Zulfiqar F; Ashraf M
    Plant Physiol Biochem; 2021 Mar; 160():257-268. PubMed ID: 33529801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects, tolerance mechanisms and management of salt stress in grain legumes.
    Farooq M; Gogoi N; Hussain M; Barthakur S; Paul S; Bharadwaj N; Migdadi HM; Alghamdi SS; Siddique KHM
    Plant Physiol Biochem; 2017 Sep; 118():199-217. PubMed ID: 28648997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of halophytic nanoparticles towards the remediation of degraded and saline agricultural lands.
    Munir N; Hanif M; Dias DA; Abideen Z
    Environ Sci Pollut Res Int; 2021 Nov; 28(43):60383-60405. PubMed ID: 34532807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive overview of nanotechnology in sustainable agriculture.
    Arora S; Murmu G; Mukherjee K; Saha S; Maity D
    J Biotechnol; 2022 Aug; 355():21-41. PubMed ID: 35752390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in salt tolerance molecular mechanism in tobacco plants.
    Sun H; Sun X; Wang H; Ma X
    Hereditas; 2020 Feb; 157(1):5. PubMed ID: 32093781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic Approaches to Uncover Salt Stress Response Mechanisms in Crops.
    Kausar R; Komatsu S
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt stress under the scalpel - dissecting the genetics of salt tolerance.
    Morton MJL; Awlia M; Al-Tamimi N; Saade S; Pailles Y; Negrão S; Tester M
    Plant J; 2019 Jan; 97(1):148-163. PubMed ID: 30548719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation Mechanism of Salt Excluders under Saline Conditions and Its Applications.
    Chen M; Yang Z; Liu J; Zhu T; Wei X; Fan H; Wang B
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30463331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofertilizer use for sustainable agriculture: Advantages and limitations.
    Zulfiqar F; Navarro M; Ashraf M; Akram NA; Munné-Bosch S
    Plant Sci; 2019 Dec; 289():110270. PubMed ID: 31623775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different Tactics of Synthesized Zinc Oxide Nanoparticles, Homeostasis Ions, and Phytohormones as Regulators and Adaptatively Parameters to Alleviate the Adverse Effects of Salinity Stress on Plants.
    Ahmed M; Decsi K; Tóth Z
    Life (Basel); 2022 Dec; 13(1):. PubMed ID: 36676021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives.
    Barkla BJ; Castellanos-Cervantes T; de León JL; Matros A; Mock HP; Perez-Alfocea F; Salekdeh GH; Witzel K; Zörb C
    Proteomics; 2013 Jun; 13(12-13):1885-900. PubMed ID: 23723162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lessons from crop plants struggling with salinity.
    Cabot C; Sibole JV; Barceló J; Poschenrieder C
    Plant Sci; 2014 Sep; 226():2-13. PubMed ID: 25113445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Chemical Priming to Enhance Abiotic Stress Tolerance in Plants.
    Sako K; Nguyen HM; Seki M
    Plant Cell Physiol; 2021 Feb; 61(12):1995-2003. PubMed ID: 32966567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytonanotechnology applications in modern agriculture.
    Jiang M; Song Y; Kanwar MK; Ahammed GJ; Shao S; Zhou J
    J Nanobiotechnology; 2021 Dec; 19(1):430. PubMed ID: 34930275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges and perspectives to improve crop drought and salinity tolerance.
    Cominelli E; Conti L; Tonelli C; Galbiati M
    N Biotechnol; 2013 May; 30(4):355-61. PubMed ID: 23165101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance.
    Zhao L; Lu L; Wang A; Zhang H; Huang M; Wu H; Xing B; Wang Z; Ji R
    J Agric Food Chem; 2020 Feb; 68(7):1935-1947. PubMed ID: 32003987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity.
    Guleria G; Thakur S; Shandilya M; Sharma S; Thakur S; Kalia S
    Plant Physiol Biochem; 2023 Jan; 194():533-549. PubMed ID: 36521290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salinity Tolerance in Plants: Trends and Perspectives.
    Hernández JA
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31096626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial amelioration of crop salinity stress.
    Dodd IC; Pérez-Alfocea F
    J Exp Bot; 2012 May; 63(9):3415-28. PubMed ID: 22403432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights Into Microbially Induced Salt Tolerance and Endurance Mechanisms (STEM) in Plants.
    Kaushal M
    Front Microbiol; 2020; 11():1518. PubMed ID: 32982994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.