These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33529919)

  • 1. RNA-controlled regulation in Caulobacter crescentus.
    Fröhlich KS; Velasco Gomariz M
    Curr Opin Microbiol; 2021 Apr; 60():1-7. PubMed ID: 33529919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-transcriptional gene regulation by an Hfq-independent small RNA in Caulobacter crescentus.
    Fröhlich KS; Förstner KU; Gitai Z
    Nucleic Acids Res; 2018 Nov; 46(20):10969-10982. PubMed ID: 30165530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide profiling of Hfq-bound RNAs reveals the iron-responsive small RNA RusT in
    Vogt LN; Panis G; Schäpers A; Peschek N; Huber M; Papenfort K; Viollier PH; Fröhlich KS
    mBio; 2024 Apr; 15(4):e0315323. PubMed ID: 38511926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CrfA, a small noncoding RNA regulator of adaptation to carbon starvation in Caulobacter crescentus.
    Landt SG; Lesley JA; Britos L; Shapiro L
    J Bacteriol; 2010 Sep; 192(18):4763-75. PubMed ID: 20601471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Hfq-binding RNAs in Caulobacter crescentus.
    Assis NG; Ribeiro RA; da Silva LG; Vicente AM; Hug I; Marques MV
    RNA Biol; 2019 Jun; 16(6):719-726. PubMed ID: 30870072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent Feedforward Regulation of Gene Expression by Caulobacter σ
    Tien MZ; Stein BJ; Crosson S
    J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30012732
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Santiago-Frangos A; Fröhlich KS; Jeliazkov JR; Małecka EM; Marino G; Gray JJ; Luisi BF; Woodson SA; Hardwick SW
    Proc Natl Acad Sci U S A; 2019 May; 116(22):10978-10987. PubMed ID: 31076551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of the Cold Shock DEAD-Box RNA Helicase RhlE to the RNA Degradosome in Caulobacter crescentus.
    Aguirre AA; Vicente AM; Hardwick SW; Alvelos DM; Mazzon RR; Luisi BF; Marques MV
    J Bacteriol; 2017 Jul; 199(13):. PubMed ID: 28396352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold Regulation of Genes Encoding Ion Transport Systems in the Oligotrophic Bacterium Caulobacter crescentus.
    de Araújo HL; Martins BP; Vicente AM; Lorenzetti APR; Koide T; Marques MV
    Microbiol Spectr; 2021 Sep; 9(1):e0071021. PubMed ID: 34479415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Phosphorolytic Exoribonucleases Polynucleotide Phosphorylase and RNase PH Stabilize sRNAs and Facilitate Regulation of Their mRNA Targets.
    Cameron TA; De Lay NR
    J Bacteriol; 2016 Dec; 198(24):3309-3317. PubMed ID: 27698082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodology for Ribosome Profiling of Key Stages of the Caulobacter crescentus Cell Cycle.
    Aretakis JR; Al-Husini N; Schrader JM
    Methods Enzymol; 2018; 612():443-465. PubMed ID: 30502952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.
    Panja S; Santiago-Frangos A; Schu DJ; Gottesman S; Woodson SA
    J Mol Biol; 2015 Nov; 427(22):3491-3500. PubMed ID: 26196441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Streptomyces coelicolor sRNA scr5239 inhibits agarase expression by direct base pairing to the dagA coding region.
    Vockenhuber MP; Suess B
    Microbiology (Reading); 2012 Feb; 158(Pt 2):424-435. PubMed ID: 22075028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ChvG-ChvI and NtrY-NtrX Two-Component Systems Coordinately Regulate Growth of Caulobacter crescentus.
    Stein BJ; Fiebig A; Crosson S
    J Bacteriol; 2021 Aug; 203(17):e0019921. PubMed ID: 34124942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal and spatial regulation of fliP, an early flagellar gene of Caulobacter crescentus that is required for motility and normal cell division.
    Gober JW; Boyd CH; Jarvis M; Mangan EK; Rizzo MF; Wingrove JA
    J Bacteriol; 1995 Jul; 177(13):3656-67. PubMed ID: 7601828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. tmRNA in Caulobacter crescentus is cell cycle regulated by temporally controlled transcription and RNA degradation.
    Keiler KC; Shapiro L
    J Bacteriol; 2003 Mar; 185(6):1825-30. PubMed ID: 12618446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA.
    Corcoran CP; Podkaminski D; Papenfort K; Urban JH; Hinton JC; Vogel J
    Mol Microbiol; 2012 May; 84(3):428-45. PubMed ID: 22458297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small non-coding RNAs in Caulobacter crescentus.
    Landt SG; Abeliuk E; McGrath PT; Lesley JA; McAdams HH; Shapiro L
    Mol Microbiol; 2008 May; 68(3):600-14. PubMed ID: 18373523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the PhoB Regulon and Role of PhoU in the Phosphate Starvation Response of Caulobacter crescentus.
    Lubin EA; Henry JT; Fiebig A; Crosson S; Laub MT
    J Bacteriol; 2016 Jan; 198(1):187-200. PubMed ID: 26483520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle control by oscillating regulatory proteins in Caulobacter crescentus.
    Holtzendorff J; Reinhardt J; Viollier PH
    Bioessays; 2006 Apr; 28(4):355-61. PubMed ID: 16547950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.