These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33529925)

  • 1. A complex gene regulatory architecture underlies the development and evolution of cuticle morphology in Drosophila.
    Kittelmann S; Preger-Ben Noon E; McGregor AP; Frankel N
    Curr Opin Genet Dev; 2021 Aug; 69():21-27. PubMed ID: 33529925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism.
    Sucena E; Delon I; Jones I; Payre F; Stern DL
    Nature; 2003 Aug; 424(6951):935-8. PubMed ID: 12931187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene regulatory network architecture in different developmental contexts influences the genetic basis of morphological evolution.
    Kittelmann S; Buffry AD; Franke FA; Almudi I; Yoth M; Sabaris G; Couso JP; Nunes MDS; Frankel N; Gómez-Skarmeta JL; Pueyo-Marques J; Arif S; McGregor AP
    PLoS Genet; 2018 May; 14(5):e1007375. PubMed ID: 29723190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure and evolution of cis-regulatory regions: the shavenbaby story.
    Stern DL; Frankel N
    Philos Trans R Soc Lond B Biol Sci; 2013 Dec; 368(1632):20130028. PubMed ID: 24218640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological evolution caused by many subtle-effect substitutions in regulatory DNA.
    Frankel N; Erezyilmaz DF; McGregor AP; Wang S; Payre F; Stern DL
    Nature; 2011 Jun; 474(7353):598-603. PubMed ID: 21720363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cis-regulatory variation in the shavenbaby gene underlies intraspecific phenotypic variation, mirroring interspecific divergence in the same trait.
    Soverna AF; Rodriguez NC; Korgaonkar A; Hasson E; Stern DL; Frankel N
    Evolution; 2021 Feb; 75(2):427-436. PubMed ID: 33314059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dual function of ovo/shavenbaby in germline and epidermis differentiation is conserved between Drosophila melanogaster and the olive fruit fly Bactrocera oleae.
    Khila A; El Haidani A; Vincent A; Payre F; Souda SI
    Insect Biochem Mol Biol; 2003 Jul; 33(7):691-9. PubMed ID: 12826096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergence of larval morphology between Drosophila sechellia and its sibling species caused by cis-regulatory evolution of ovo/shaven-baby.
    Sucena E; Stern DL
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4530-4. PubMed ID: 10781057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of larval morphology in flies: get in shape with shavenbaby.
    Delon I; Payre F
    Trends Genet; 2004 Jul; 20(7):305-13. PubMed ID: 15219395
    [No Abstract]   [Full Text] [Related]  

  • 10. From shavenbaby to the naked valley: trichome formation as a model for evolutionary developmental biology.
    Arif S; Kittelmann S; McGregor AP
    Evol Dev; 2015; 17(1):120-6. PubMed ID: 25627718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SoxNeuro and Shavenbaby act cooperatively to shape denticles in the embryonic epidermis of
    Rizzo NP; Bejsovec A
    Development; 2017 Jun; 144(12):2248-2258. PubMed ID: 28506986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological evolution through multiple cis-regulatory mutations at a single gene.
    McGregor AP; Orgogozo V; Delon I; Zanet J; Srinivasan DG; Payre F; Stern DL
    Nature; 2007 Aug; 448(7153):587-90. PubMed ID: 17632547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ovo/svb integrates Wingless and DER pathways to control epidermis differentiation.
    Payre F; Vincent A; Carreno S
    Nature; 1999 Jul; 400(6741):271-5. PubMed ID: 10421370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Drosophila HMG-domain proteins SoxNeuro and Dichaete direct trichome formation via the activation of shavenbaby and the restriction of Wingless pathway activity.
    Overton PM; Chia W; Buescher M
    Development; 2007 Aug; 134(15):2807-13. PubMed ID: 17611224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analyses of Shavenbaby target genes reveals distinct features of enhancer organization.
    Menoret D; Santolini M; Fernandes I; Spokony R; Zanet J; Gonzalez I; Latapie Y; Ferrer P; Rouault H; White KP; Besse P; Hakim V; Aerts S; Payre F; Plaza S
    Genome Biol; 2013 Aug; 14(8):R86. PubMed ID: 23972280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental biology: hotspots for evolution.
    Richardson MK; Brakefield PM
    Nature; 2003 Aug; 424(6951):894-5. PubMed ID: 12931172
    [No Abstract]   [Full Text] [Related]  

  • 17. Phenotypic robustness conferred by apparently redundant transcriptional enhancers.
    Frankel N; Davis GK; Vargas D; Wang S; Payre F; Stern DL
    Nature; 2010 Jul; 466(7305):490-3. PubMed ID: 20512118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the Transcriptional Regulatory Network Correlates with Regulatory Divergence in Drosophila.
    Yang B; Wittkopp PJ
    Mol Biol Evol; 2017 Jun; 34(6):1352-1362. PubMed ID: 28333240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution.
    Frankel N; Wang S; Stern DL
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):20975-9. PubMed ID: 23197832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redeployment of a conserved gene regulatory network during Aedes aegypti development.
    Suryamohan K; Hanson C; Andrews E; Sinha S; Scheel MD; Halfon MS
    Dev Biol; 2016 Aug; 416(2):402-13. PubMed ID: 27341759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.